~(1+0) + 1 · 0
= ~(1) + 1 · 0
= 0 + 1 · 0
= 0 + 0
= 0
x y z F
-----------
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1
{ (x ,x ,...,x ) | x in B, 1 <= i <= n } to the set B={0,1}.
1 2 n i
F(b ,b ,...,b ) = G(b ,b ,...,b ) whenever b , b , ..., b 1 2 n 1 2 n 1 2 nare members of {0,1}.
| Name | Identity |
|---|---|
| Complement Laws | x + ~x = 1 x · ~x = 0 |
| Law of the Double Complement | ~(~x) = x |
| Idempotent Laws | x + x = x x · x = x |
| Identity Laws | x + 0 = x x · 1 = x |
| Dominance Laws | x + 1 = 1 x · 0 = 0 |
| Commutative Laws | x + y = y + x x · y = y · x |
| Associative Laws | x + (y + z) = (x + y) + z x · (y · z) = (x · y) · z |
| Distributive Laws | x + (y · z) = (x + y) · (x + z) x · (y + z) = (x · y)+(x · z) |
| DeMorgan's Laws | ~(x · y) = ~x + ~y ~(x + y) = ~x · ~y |
| Absorption Law | x · (x + y) = x |
x y z y + z xy xz x(y + z) xy + xz
----------------------------------------------
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1
x(x + y) = (x + 0)(x + y) Identity law
= x + (0 · y) Distributive law
= x + (0) Dominance law
= x Identity law
OR
x(x+y) = (xx) + (xy) Distributive law
= x + (xy) Idempotent law
= x(1 + y) Distributive law
= x(1) Dominance law
= x Identity law
x y xy x + (xy)
---------------------
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1
x ,x ,...,x is a boolean product y y ... y where y = x or y = ~x . 1 2 n 1 2 n i i i i
x y z F
-----------
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1 *
1 1 0 0
1 1 1 0
F(x,y,z) = x ~y z x y z F
-----------
0 0 0 0
0 0 1 0
0 1 0 1 *
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1 *
1 1 1 0
F(x,y,z) = ~xy · ~z + xy · ~z x y z F
-----------
0 0 0 0
0 0 1 0
0 1 0 1 *
0 1 1 0
1 0 0 1 *
1 0 1 0
1 1 0 1 *
1 1 1 0
X X Y Y Z Z Z Z Z Z Z Z
1 0 1 0 3 2 1 0 3 2 1 0
-------------------------------------------
0 X 0 = 0 00 00 0000
0 X 1 = 0 00 01 0000
0 X 2 = 0 00 10 0000
0 X 3 = 0 00 11 0000
1 X 0 = 0 01 00 0000
1 X 1 = 1 01 01 0001 *
1 X 2 = 2 01 10 0010 *
1 X 3 = 3 01 11 0011 * *
2 X 0 = 0 10 00 0000
2 X 1 = 2 10 01 0010 *
2 X 2 = 4 10 10 0100 *
2 X 3 = 6 10 11 0110 * *
3 X 0 = 0 11 00 0000
3 X 1 = 3 11 01 0011 * *
3 X 2 = 6 11 10 0110 * *
3 X 3 = 9 11 11 1001 * *
Z 0
X X Y Y Z Z Z Z Z Z Z Z
1 0 1 0 3 2 1 0 3 2 1 0
----------------------------------------
1 X 1 = 1 01 01 0001 *
1 X 3 = 3 01 11 0011 * *
3 X 1 = 3 11 01 0011 * *
3 X 3 = 9 11 11 1001 * *
Z = ~X X ~Y Y + ~X X Y Y + X X ~Y Y + X X Y Y
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Z 1
X X Y Y Z Z Z Z Z Z Z Z
1 0 1 0 3 2 1 0 3 2 1 0
----------------------------------------
1 X 2 = 2 01 10 0010 *
1 X 3 = 3 01 11 0011 * *
2 X 1 = 2 10 01 0010 *
2 X 3 = 6 10 11 0110 * *
3 X 1 = 3 11 01 0011 * *
3 X 2 = 6 11 10 0110 * *
Z = ~X X Y ~Y + ~X X Y Y + X ~X ~Y Y + X ~X Y Y + X X ~Y Y + X X Y ~Y
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Z 2
X X Y Y Z Z Z Z Z Z Z Z
1 0 1 0 3 2 1 0 3 2 1 0
------------------------------------------
2 X 2 = 4 10 10 0100 *
2 X 3 = 6 10 11 0110 * *
3 X 2 = 6 11 10 0110 * *
Z = X ~X Y ~Y + X ~X Y Y + X X Y ~Y
2 1 0 1 0 1 0 1 0 1 0 1 0
Z 3
X X Y Y Z Z Z Z Z Z Z Z
1 0 1 0 3 2 1 0 3 2 1 0
------------------------------------------
3 X 3 = 9 11 11 1001 * *
Z = X X Y Y
3 1 0 1 0
Z = ~X X ~Y Y + ~X X Y Y + X X ~Y Y + X X Y Y
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
= ~X X Y (~Y + Y ) + X X Y (~Y + Y ) distributive
1 0 0 1 1 1 0 0 1 1
= ~X X Y + X X Y complement and identity
1 0 0 1 0 0
= X Y ( ~X + X ) distributive
0 0 1 1
= X Y complement and identity
0 0
Z = ~X X Y ~Y + ~X X Y Y + X ~X ~Y Y + X ~X Y Y + X X ~Y Y + X X Y ~Y
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
= ~X X Y (~Y + Y ) + X ~X Y ( ~Y + Y ) + X X ~Y Y + X X Y ~Y distributive
1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0
= ~X X Y + X ~X Y + X X ~Y Y + X X Y ~Y complement and identity
1 0 1 1 0 0 1 0 1 0 1 0 1 0
= ~X X Y + X ~X Y + (X ~X ~Y Y ) + X X ~Y Y + (~X X Y ~Y ) + X X Y ~Y idempotent
1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
= ~X X Y + X ~X Y + X ~Y Y (~X + X ) + X Y ~Y (~X + X ) distributive
1 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1
= ~X X Y + X ~X Y + X ~Y Y + X Y ~Y complement and identity
1 0 1 1 0 0 1 1 0 0 1 0
Z = X ~X Y ~Y + X ~X Y Y + X X Y ~Y
2 1 0 1 0 1 0 1 0 1 0 1 0
= X ~X Y ( ~Y + Y ) + X X Y ~Y distributive
1 0 1 0 0 1 0 1 0
= X ~X Y + X X Y ~Y complement and identity
1 0 1 1 0 1 0
= X ~X Y + ( X ~X Y ~Y ) + X X Y ~Y idempotent
1 0 1 1 0 1 0 1 0 1 0
= X ~X Y + X Y ~Y (~X + X ) distributive
1 0 1 1 1 0 0 0
= X ~X Y + X Y ~Y complement and identity
1 0 1 1 1 0
Z = X X Y Y
3 1 0 1 0
Z = X ~X Y + X Y ~Y
2 1 0 1 1 1 0
Z = X ~Y Y + X ~X Y + ~X X Y + X Y ~Y
1 1 1 0 1 0 0 1 0 1 0 1 0
Z = X Y
0 0 0
F = A + B + C
= ~~( A + B + C )
= ~( ~A · ~B · ~C )
X Y F=~(X · Y)
---------------------
0 0 1
0 1 1
1 0 1
1 1 0
Z = X X Y Y
3 1 0 1 0
= ~( ~( X X Y Y ) )
1 0 1 0
Z = X ~X Y + X Y ~Y
2 1 0 1 1 1 0
= ~( ~( X ~X Y + X Y ~Y ) )
1 0 1 1 1 0
= ~( X ~X Y · X Y ~Y )
1 0 1 1 1 0
Z = X ~Y Y + X ~X Y + ~X X Y + X Y ~Y
1 1 1 0 1 0 0 1 0 1 0 1 0
= ~( ~( X ~Y Y + X ~X Y + ~X X Y + X Y ~Y ) )
1 1 0 1 0 0 1 0 1 0 1 0
= ~( X ~Y Y · X ~X Y · ~X X Y · X Y ~Y )
1 1 0 1 0 0 1 0 1 0 1 0
Z = X Y
0 0 0
= ~( ~( X Y ) )
0 0