Boolean Algebra


Table of Contents

  1. Introduction
  2. Boolean Operators
  3. Rules of Precedence
  4. Boolean Functions
  5. Identities of Boolean Algebra
  6. The Laws of Boolean Algebra
  7. Duality
  8. Representing Boolean Functions
    1. Minterms
    2. Sum-of-Products
  9. Two-Bit by Two-Bit Multiplier
    1. Sum-of-Products
    2. Minimization
    3. The NAND Gate Multiplier

Introduction

Boolean Operators

Rules of Precedence

Boolean Functions

Identities of Boolean Algebra

Name Identity
Complement Laws x + ~x = 1
x · ~x = 0
Law of the Double Complement ~(~x) = x
Idempotent Laws x + x = x
x · x = x
Identity Laws x + 0 = x
x · 1 = x
Dominance Laws x + 1 = 1
x · 0 = 0
Commutative Laws x + y = y + x
x · y = y · x
Associative Laws x + (y + z) = (x + y) + z
x · (y · z) = (x · y) · z
Distributive Laws x + (y · z) = (x + y) · (x + z)
x · (y + z) = (x · y)+(x · z)
DeMorgan's Laws ~(x · y) = ~x + ~y
~(x + y) = ~x · ~y
Absorption Law x · (x + y) = x

The Laws of Boolean Algebra

Duality

Representing Boolean Functions

Minterms

Sum-of-Products

     x  y  z   F
     -----------
     0  0  0   0
     0  0  1   0
     0  1  0   0
     0  1  1   0
     1  0  0   0
     1  0  1   1 *
     1  1  0   0
     1  1  1   0
F(x,y,z) = x ~y z

     x  y  z   F
     -----------
     0  0  0   0
     0  0  1   0
     0  1  0   1 *
     0  1  1   0
     1  0  0   0
     1  0  1   0
     1  1  0   1 *
     1  1  1   0
F(x,y,z) = ~xy · ~z + xy · ~z

Find the sum-of-products expansion for F(x,y,z)=(x+y) · ~z
     x  y  z   F
     -----------
     0  0  0   0
     0  0  1   0
     0  1  0   1 *
     0  1  1   0
     1  0  0   1 *
     1  0  1   0
     1  1  0   1 *
     1  1  1   0

Two-Bit by Two-Bit Multiplier

  1. Construct the truth table using 4 inputs and 4 outputs where both the inputs and outputs represent binary numbers.
  2. Find a sum-of-products expansion for this truth table.
  3. Minimize the sum-of-products expansion using boolean algebra.
                X X  Y Y  Z Z Z Z   Z  Z  Z  Z
                 1 0  1 0  3 2 1 0   3  2  1  0
     -------------------------------------------
     0 X 0 = 0   00   00    0000 
     0 X 1 = 0   00   01    0000
     0 X 2 = 0   00   10    0000
     0 X 3 = 0   00   11    0000
     1 X 0 = 0   01   00    0000
     1 X 1 = 1   01   01    0001              *
     1 X 2 = 2   01   10    0010           *
     1 X 3 = 3   01   11    0011           *  *
     2 X 0 = 0   10   00    0000
     2 X 1 = 2   10   01    0010           *
     2 X 2 = 4   10   10    0100        *
     2 X 3 = 6   10   11    0110        *  * 
     3 X 0 = 0   11   00    0000
     3 X 1 = 3   11   01    0011           *  * 
     3 X 2 = 6   11   10    0110        *  * 
     3 X 3 = 9   11   11    1001     *        * 

Sum-of-Products

Minimization

Z  =  ~X X ~Y Y  + ~X X Y Y  + X X ~Y Y  + X X Y Y
 0      1 0  1 0     1 0 1 0    1 0 1 0     1 0 1 0

   =  ~X X Y (~Y  + Y ) + X X Y (~Y  + Y )    distributive
        1 0 0   1    1     1 0 0   1    1

   =  ~X X Y  + X X Y      complement and identity
        1 0 0    1 0 0

   =  X Y ( ~X  + X )      distributive
       0 0    1    1

   =  X Y                  complement and identity
       0 0


Z  =  ~X X Y ~Y  + ~X X Y Y  + X ~X ~Y Y  + X ~X Y Y  + X X ~Y Y  + X X Y ~Y
 1      1 0 1  0     1 0 1 0    1  0  1 0    1  0 1 0    1 0  1 0    1 0 1  0

   =  ~X X Y (~Y + Y ) + X ~X Y ( ~Y + Y ) + X X ~Y Y + X X Y ~Y   distributive
        1 0 1   0   0     1  0 0    1   1     1 0  1 0   1 0 1  0

   =  ~X X Y + X ~X Y  + X X ~Y Y  + X X Y ~Y   complement and identity
        1 0 1   1  0 0    1 0  1 0    1 0 1  0

   =  ~X X Y  + X ~X Y  + (X ~X ~Y Y ) + X X ~Y Y  + (~X X Y ~Y ) + X X Y ~Y   idempotent
        1 0 1    1  0 0     1  0  1 0     1 0  1 0      1 0 1  0     1 0 1  0

   =  ~X X Y  + X ~X Y  + X ~Y Y (~X + X ) + X Y ~Y (~X + X )      distributive 
        1 0 1    1  0 0    1  1 0   0   0     0 1  0   1   1
     
   =  ~X X Y  + X ~X Y  + X ~Y Y  + X Y ~Y      complement and identity
        1 0 1    1  0 0    1  1 0    0 1  0


Z  =  X ~X Y ~Y  + X ~X Y Y  + X X Y ~Y
 2     1  0 1  0    1  0 1 0    1 0 1  0

   =  X ~X Y ( ~Y + Y ) + X X Y ~Y           distributive
       1  0 1    0   0     1 0 1  0

   =  X ~X Y  + X X Y ~Y                     complement and identity
       1  0 1    1 0 1  0

   =  X ~X Y  + ( X ~X Y ~Y ) + X X Y ~Y     idempotent
       1  0 1      1  0 1  0     1 0 1  0

   =  X ~X Y  + X Y ~Y (~X + X )             distributive
       1  0 1    1 1  0   0   0

   =  X ~X Y  + X Y ~Y                       complement and identity
       1  0 1    1 1  0


Z  =  X X Y Y 
 3     1 0 1 0

Z  =  X ~X Y  + X Y ~Y
 2     1  0 1    1 1  0

Z  =  X ~Y Y  + X ~X Y  + ~X X Y  + X Y ~Y
 1     1  1 0    1  0 0     1 0 1    0 1  0

Z  =  X Y
 0     0 0

The NAND Gate Multiplier

     X  Y  F=~(X · Y)
     ---------------------
     0  0  1  
     0  1  1   
     1  0  1   
     1  1  0  

Z  =  X X Y Y
 3     1 0 1 0

   =  ~( ~( X X Y Y ) )
             1 0 1 0


Z  =  X ~X Y  + X Y ~Y
 2     1  0 1    1 1  0

   =  ~( ~( X ~X Y  + X Y ~Y ) )
             1  0 1    1 1  0

   =  ~( X ~X Y · X Y ~Y )
          1  0 1   1 1  0


Z  =  X ~Y Y  + X ~X Y  + ~X X Y  + X Y ~Y
 1     1  1 0    1  0 0     1 0 1    0 1  0

   =  ~( ~( X ~Y Y  + X ~X Y  + ~X X Y  + X Y ~Y ) )
             1  1 0    1  0 0     1 0 1    0 1  0

   =  ~( X ~Y Y · X ~X Y · ~X X Y · X Y ~Y ) 
          1  1 0   1  0 0    1 0 1   0 1  0


Z  =  X Y 
 0     0 0

   =  ~( ~( X Y ) )
             0 0

Return to Digital Syllabus