CUPL Tutorial
We will walk through the steps in creating a circuit implementation in a 22V10 chip using the Atmel/ Logical Devices CUPL software and the ChipMaster 6000 software for programming the chip.

To see more about the 22v10, go here.
device.html
The design:

We will design and construct a simple "bouncing ball " LED circuit using only a 22v10 and a LED bar-graph circuit. The circuit will behave like the following:

PRIVATE
clock

C
1
1
0
1
1
1
1
1

C
1
0
1
1
1
1
1
1

C
0
1
1
1
1
1
1
1

C
1
0
1
1
1
1
1
1

C
1
1
0
1
1
1
1
1

C
1
1
1
0
1
1
1
1

C
1
1
1
1
0
1
1
1

C
1
1
1
1
1
0
1
1

C
1
1
1
1
1
1
0
1

C
1
1
1
1
1
1
1
0

C
1
1
1
1
1
1
0
1

Thus, the circuit is essentially a "one-hot", or in this case, an active-low "zero-hot" counter with a latch reserved for recording the current direction of the ball. We will construct the circuit using state-machines in the CUPL syntax.

To start, the CUPL software should be installed correctly. Check here to make sure.

To start the CUPL software package, type MCUPL at the DOS C: prompt in the CUPL directory.you should see this pop up:

INCLUDEPICTURE \d "title.jpg"

[image: image1.png]

and then the menu should follow in a second or after pressing enter:

Navigation is accomplished by using the arrow keys on the keypad to select the option on the Main Menu. Alternatively, the option can be selected by pressing the keyboard letter corresponding to the option letter in brackets.

It is a good idea to take the time and explore the different menu options to get familiar with navigation. The first thign to do is select the device (Device Selection). Press <D> or select it using the arrow keys.At the next prompt choose the P22V10 device. It will then prompt for the package. We want the DIP (dual in-line) package.

[image: image2.png]Create or Edit
a design C.PLD) file

Tl0perator Inputz

[image: image3.png]Do you want (DIP or (LIEEC?

Tl0perator Inputz

[image: image4.png]Registered/Active Low

Having picked the device, we will now create a new file for the bouncing LED device. At the main menu , choose <E>dit design file to start work on a new file.At the prompt, type in bounce.pld as the new file name and then press Enter. You should now be in the MS-DOS EDIT program.

The first thing to do is enter the header information The header information is used to keep track of the revisions and device selection. The format is:

PRIVATE
Name
Bounce;

Partno
01;

Date
1/16/97;

Rev
01;

Designer
Joe Programmer;

Company
U. Penn;

Assembly
None;

Location
None;

Device
P22V10;

This information is included at the beginning of every .pld file.

The next thing to do is asign the pins to specific input and output variables. To start with, we will asign the P22v10 the following:

Pin Declarations
/**Inputs**/

Pin 1 = CLK;

Pin 2 = reset;

/**Outputs**/

Pin 15 = out3;

Pin 16 = out2;

Pin 17 = out1;

Pin 18 = out0;

Pin 19 = dir;

The next part for the design is to declare the states using define statements that have the same usage as in programming languages such as C. This is important for easy editing and readability of the code. If used correctly, define statements can relegate design changes to editing of the header statements.

The syntax for a define statement is the following:

$define replacementvalue value
We will use the define statement after the Pin declarations

$DEFINE S0 'b'1111

$DEFINE S1 'b'1110

$DEFINE S2 'b'1101

$DEFINE S3 'b'1011

$DEFINE S4 'b'0111

thus, when the file is run through the precompiler, the Sx values will be replaced with the binary values.

The next thing to do is declare the output FIELD. Look here to see more about the syntax.

FIELD count=[out3..0];

count.AR= reset;

count.SP= 'b'1111;

the .AR and .SP after count in the two following lines are known as extensions. Extensions control specific inputs to the type of flip-flop being used in the circuit.

--

CUPL Tutorial: CUPL Syntax

Number Bases
PRIVATE
Number
Base
Decimal

'b'0
Binary
0

'B'1101
Binary
13

'O'663
Octal
435

'D'92
Decimal
92

'h'BA
Hexadecimal
186

'O'[300..477]
Octal(Range)
192..314

'H'7FXX
Hexadecimal(Range)
32512..32767

List NotationExamples
FIELD DATA = [D7..D0];

FIELD Assert = [IOW, IOR, ALE];

Logical Operators
PRIVATE
Operator
Examples
Description
Precedence

!
!A
NOT
1

&
A & B
AND
2

#
A # B
OR
3

$
A $ B
XOR
4

Arithmatic Operators(used in $REPEAT and $MACRO)

PRIVATE
Operator
Examples
Description
Precedance

**
2**3
Exponentiation
1

*
2*1
Multiplication
2

/
4/2
Division
2

%
9%8
Modulus
2

+
2+4
Addition
3

-
4- 1
Subtraction
3

VariableExtensions
Extensions are used to declare specific inputsof a flip-flop type device in the chip being used. For example, agroup of D flip-flops grouped into a register can have theirasynchronous reset (.AR) treated in the following way: FIELDregister = [data7..data0]; register.AR= reset;

PRIVATE
Extension
Side Used
Description

.AP
L
Asynchronous preset of f-f

.AR
L
Asynchronous reset of f-f

.APMUX
L
Asynchronous preset multiplexer selection

.ARMUX
L
Asynchronous reset multiplexer selection

.BYP

.CA

.CE

.CK

.CKMUX

.D

.DFB

.DQ

.IMUX

.INT

.IO

.IOAR

.IOAP

.IOCK

.IOD

.IOL

.IOSP

.IOSR

.J

.K

.L

.LE

.LEMUX

.LFB

.LQ

.OBS

.OE
L
Prgrammable Output Enable

.OEMUX

.PR
L
Programmable Reload

.R

.S

.SP
L
Synchronous preset of flip-flop

.SR
L
Synchronous reset of flip-flop

.T

.TEC

Logic Equations

Set Operations

State Machines
SEQUENCE , SEQUENCED, SEQUENCEJK, SEQUENCERS, SEQUENCET- forcethe state registers in the state machine to be generated asdefault, D, J-K, S-R, and T flip-flops. Be careful to check whatis available in the device being used.

Example:
SEQUENCE statevariables{
PRESENT state_n0
IF (condition1) NEXT state_n1;

IF (condition2) NEXT state_n2;

DEFAULT NEXT state_n0;

· .

· .

· .

PRESENT state_nn

IF ...;

}

CUPL Tutorial for EE 330

Architecture of the 22v10
The 22v10 device is a programmable logic device designed toimplement custom logic functions similar in complexity to the 74series of logic chips. It has the advantage of deliveringcustomized functions that might be difficult to implement or takemultiple chips using 74 series chips. Typical applications forthis are state machines used for things such as direct memoryaccess controllers in PCs.

The 22v10 consists of twelve inputs connected to a regularsum-of-products array and ten output logic macrocells. Thesum-of-products array has programmable interconnections thatdetermine the product terms connected to the or-gate. Efficientuse of these sum-of-products gates requires implementingfunctions in the same form and minimizing through the use ofmethods such as Karnaugh maps; there are a limited number ofinputs to these sum-of-products terms. The or-gates in each logicmacrocell are connected either to a D flip-flop in registeredform or directly to the output buffers in combinatorial form.Feedback is implemented through the connection of the D flip-flopoutput to a column in the product-term array. Other featuresinclude:

· A single product term to control the output buffer

· Every output has at least 8 product terms available

· A single product term is available to generate a global, asynchronous reset

· A single product term is available to generate a preset signal

INCLUDEPICTURE \d "macrocell.gif"

for a Troubleshooting

Q. When I compile or simulate, it tells me that there were CSIM errors but then doesn't tell me what they are.
A. Look in the SO file. It will tell you what the error is.

Q. When I am compiling, I get CSIM errors, but I'm not trying to simulate it yet.
A. Turn off simulation in the Compiler Options menu.

Q. It tells me I have too many product terms when I compile it. Now what do I do
A. Look in the DOC file where it tells how many are available and how many are used. Now that you know this, you can:
1. Adjust which pin you are using to get more available product terms (this is part dependent).
2. Change the minimization options.
3. Change your logic so it uses less product terms (definitely the most difficult).

Q. When I compile I get an error similar to: "Unable to open RUNFIT.$$$".
A. This generally indicates that CUPL has run out of memory (used it up) so you need to exit and restart CUPL.

Selecting Simulation options

This allows you to specify options directly for the simulations. Under the options menu, choose the "Simulator Options" item. Listing File: Generates a simulator listing file with the input and output values for each variable are listed. Error messages are listed following each vector, with the signal name in error displayed. (SO file) Append Vectors: Appends the structured test vectors generated by the simulation onto the existing JEDEC download file. This should allow you to physically test the device with the programmer. Display Results: Displays the contents of the listing file in a window. An SO file is necessary for this to work.

Standard Compilation and Simulation Procedure

1. Open a CUPL file (PLD file) or create a new one.

2. Make sure that your device is correctly selected (menu, or in the program header)

3. In the Compiler options menu, check that the correct logic minimization is selected. Have everything unchecked in the Miscellaneous section. Have the JEDEC, equations, absolute, and list output file options selected.

4. Select Device Specific Compile under the Run menu.

5. Now debug all of your errors as listed in LST file and DOC file.

6. To Simulate, open or create the simulation file (SI file).

7. In the Simulator Options menu, make sure that the Listing File and Display Results Options are selected.

8. Select Device Specific Simulate under the Run menu.

9. If you get any simulation errors, check in the SO file. Otherwise, look at the waveforms in the new windows and see if they are correct. Press F4 to close this window or ‘?’ to get more help.

http://www.ecad.com/cupl/docs/tutorial.htm

