
Technical Report

Development of an AIBO Robot Team for 
4-Legged RoboCup Soccer League

Team LTU Blue Devils

Emily Trudell, Anthony Mitchell, Joseph Szostek 
Advisor: Dr. Chung 

chung@ltu.edu 

Mathematics and Computer Science Department
Lawrence Technological University 

21000 West Ten Mile Rd. 
Southfield, MI 48075 

United States of America 

http://qbx6.ltu.edu/chung/aibo

4 May 2007 

Abstract.  This paper presents the work of the LTU Blue Devils for RoboCup 2007 for 
the 4-Legged League.  The LTU Blue Devils are using the Tekkotsu [2] framework from 
Carnegie Melon University as a general base for AIBO [1] programming.  The current 
team has continued working with last year’s soccer behavior and has made great 
improvements.  Before this year only basic attacker and goalie behaviors were completed.  
Now localization, wireless communication, multi-agent collaboration and fuzzy logic 
have been implemented into to this year’s soccer behavior.  Also the teams work on the 
attacker and defender’s state machines will be presented along with the development of 
custom soccer motions.  Also the development tool, created by last year’s team, 
PyTekkotsu will be discussed. 



 2

Contents 
 
 
1. Introduction.................................................................................................................3 
2. State machine ..............................................................................................................3 
3. Motion.........................................................................................................................4 

3.1. Created Motions ...................................................................................................4 
3.2. Fuzzy Ball Tracking..............................................................................................4 

4. Communication ...........................................................................................................6 
5. Localization.................................................................................................................6 
6. Development Tools .....................................................................................................8 
7. Conclusion ..................................................................................................................9 
References.....................................................................................................................10 
 
 
 

 

  



 3

1. Introduction 
The LTU Blue Devils have participated in the Robocup 2005 US Open in Atlanta, 
Georgia.  We also participated in the RoboGames in San Francisco in 2006.  Our team is 
currently focused on the areas of localization, wireless communication, multi-agent 
collaboration and fuzzy logic.  We have also worked on development tools like 
PyTekkotsu and written tutorials aimed at high school level students.  We are using the 
Tekkotsu framework from Carnegie Melon University as a general base for AIBO 
programming.  The tasks in the RoboCup competition, as well as technical challenges, 
require the Tekkotsu platform to be extended and enhanced in several critical areas.  
Although Tekkotsu is a platform to aid AIBO development it is designed for general 
programming, not explicitly for soccer.  As such, we do not use any code directly from 
any other team or directly from Tekkotsu.  All of our soccer behaviors are our original 
code, utilizing the Tekkotsu layer on top of Open-R. 

2. State machine 
We currently have the appropriate game state machine set up according to the RoboCup 
rules.  Each type of player has its own state machine within the playing state.  The 
attackers have five states as can be seen in Figure 1.  The attacker’s search state rotates 
the AIBO until the ball is found.  The AIBO chases the ball in the track state.  The wait 
state can only be reached if there are two attackers connected wirelessly.  One attacker 
will wait for the other attacker to complete its action with the ball to keep them from 
colliding.  The spin state was created to allow the dog to move with the ball to a good 
kicking position.  It then performs a straight forward kick after finding a space 
undefended by the goalie.   

 
Fig. 1 The attacker’s state machine.   
 
 The defender has four states.  The lost state can only be reached if the dog is not 
close enough to the ball to need to defend its goal.  The defender’s search state differs 
from the attacker’s search state because it does not constantly rotate and it does not 
immediately move into the track state once the ball is found.  It waits until the ball is 
close enough to the home goal to begin pursuit.  In the lost state the dog uses localization 
to reset itself in an appropriate defensive position on the field.  The state machine for the 
defender can be seen in Figure 2. 

Search Track Spin Kick Wait



 4

 
Fig. 2 The defender’s state machine. 

 This state machine was first created by last year’s team and has been refined and 
added to by this year’s team.   

3. Motion 

3.1. Created Motions 
Many custom motions have been created to perform soccer related tasks.  A head butt 
motion to kick the ball about half the field length has been created.  The development of 
this motion was done by team members using Sony’s Medit tool.  The motion has been 
refined many times over and currently seems to be our most efficient kick.  We also have 
two kicks that allow the dog to kick the ball a short distance 90 degrees right or left.  
Lastly, a spin motion has been created that allows the dog to hold the ball for a short time 
and try to center itself on the goal.  We found the development of this motion to be the 
hardest.  Because we were only using Medit to create the motion, it took many tries on 
our part to get the dog to grip the floor while still moving left or right.  Currently there is 
still room for improvement in this motion but it does allow the dog to grab and move the 
ball while still allowing the dog to get a clear view with its camera. 
 

3.2. Fuzzy Ball Tracking 
A fuzzy logic engine has been implemented into our ball tracking method.  This 
smoothes out our ball tracking and makes it more reliable.  The current fuzzy sets and 
rules are defined in Figures 3 through 5.  The fuzzy engine consists of three C++ classes: 
Fuzzy set, rules, and fuzzy engine.  These classes allow us to define simple two variable 
rules or more complex three or four variable rules.  The singleton method was used to 
defuzzify the fuzzified inputs.  This proved to be accurate enough to improve the ball 
tracking greatly.  Using fuzzy logic has allowed us to use the ball area to directly affect 
the AIBO’s speed without having to worry about oscillation caused by camera noise.  It 
also allows us to directly relate the ball area to the output speed when distance from the 
ball and ball area do not have a simple linear relationship.  Based on the ball area value a 
degree of membership is calculated for the fuzzy sets using the rules seen in Figure 5. 
 

Search Track Kick Lost



 5

 
Fig. 3 The ball area fuzzy set used in the attacker’s ball tracking. 
 

 
Fig. 4 The speed fuzzy set used in the attacker’s ball tracking.  

 
 
 
 
 



 6

Rule 1: 
IF   ball_area is Far 
THEN set velocity to Fast 
 
Rule 2: 
IF   ball_area is Medium 
THEN set velocity to Medium 
 
Rule 3: 
IF   ball_area is Close 
THEN set velocity to Slow 
 
Rule 4: 
IF   ball_area is Very Close 
THEN set velocity to Stop 

Fig. 5 Rules created for the implementation of a fuzzy engine for the attacker’s ball tracking. 
 

 We hope to make our ball tracking even more accurate and reliable by using the 
full potential of the fuzzy engine.  We want to add more rules and another variable for the 
dog’s current speed. 

4. Communication 
Another focus of interest for us is using wireless communication between AIBOs. We are 
working with the Tekkotsu wireless class to create our own code for multiple outgoing 
connections.  Currently we have working code that allows the two attacking AIBOs to 
maintain bidirectional communication while running our soccer behavior simultaneously.  
This enables the AIBOs to share information, e.g. robot and ball locations, and allow for 
multi-agent collaboration to complete more complex strategies.  The two attackers inform 
each other how close they are to the ball and if they are currently trying to grab or kick 
the ball.  In any of these cases the dog further away from the ball will be thrown into a 
wait state.  This state makes the dog get about four feet away from the ball, and the dog 
will readjust itself if it is too close or too far when it is thrown into this state.   
 With this communication the dogs can work together and most importantly not 
work against each other by fighting over the ball.  We hope to further utilize this 
communication by implementing localization within the attackers so that they can inform 
each other where the ball currently is. 
 Currently we are using TCP to send character arrays over the network.  Each dog 
sets up a sending network and a receiving network over specified ports.  This will be 
converted to UDP to comply with the rules of RoboCup 2007. 
 

5. Localization 
One of the major areas which we are researching and developing is localization.  We 
currently have implemented a localization engine into our defender soccer code.   The 
localization engine can calculate the location and orientation of the AIBO on the field, 
using the distances and directions to a goal and a beacon.  The location can be determined 



 7

by the two distances alone.  Originally both the beacon distance and goal distance was 
being estimated to determine the angles to the landmarks and the dog’s location.   After 
much testing a new method has been developed.  Now we are capturing the dog’s head 
pan angle and offsetting it by the horizontal center of the vision object.  This has proven 
to be much more accurate in calculating than estimating two distances.  We still have to 
estimate one distance to complete the triangle, so we are continuing to estimate our 
distance to the goal.  This estimate has proven to be much more reliable than to the 
beacon distance estimate. 
 Currently Tekkotsu does not support multiple vision events in a frame.  This at 
first caused a problem for us to successfully identify a beacon.  Currently we allow for 
vision events that may be a beacon to be compared to the last five frames.  This allows us 
to very accurately decipher the left and right beacon, and recognize beacons in general. 
 Our method of calculating our final location can be seen in Figure 6.  Everything 
about triangles T1 and T2 are the same as when the AIBO is on the other side of the goal.  
The final n4 answer is n1-n2, or the negation of the other case’s n4 answer of n3-n1.  If the 
dog is facing the opposite direction it yields an x value that is in the opposite direction of 
the goal from that of the other case.  To make the results for the two cases compatible we 
need to reverse the sign of the one case’s x result.  As x is derived from sin(n4), which 
will be negated if n4 is negated, and y is derived from cos(n4), which will be unaffected if 
n4 is negated, we can solve this by using the exact same calculations for both cases. 



 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6. Development Tools 
In addition to improving and extending Tekkotsu on-board the AIBO we have developed 
a series of remote processing tools to aid AIBO development.  This system, PyTekkotsu, 
runs alongside Tekkotsu and helps developers prototype and debug behaviors, capture 
and manipulate motions, run simulations, track the state of the dog, etc.  It is written in 
the Python language so an interactive interpreter can be used to inspect the status or run 
arbitrary code on the AIBO.  PyTekkotsu also includes many utilities to simplify 
common tasks such as updating objects, changing configurations, and swapping 
components.  PyTekkotsu has been openly released with documentation. 

Beacon

AIBO

Goal

Si
de

 a 
—

 k
no

wn

Side b — known

Side c — constant

c
1  = (a 2 - b 2 + c 2) /2c

d =
 sq

rt(
a2  - c

1
2 )

c
2  = c - c

1

n1 = arcsin(c1/a)
(crosses line y)

n 2
 = arc

sin
(c 2

/b)

90 - n 3 =  n 3a

Triangle T1

Triangle T2

Triangle T3

Triangle T4

n
3 : constant

x = a sin(n4)

y 
= 

a 
co

s(
n 4)

n3a

n3a

n3

n
1 - n

3 = n
4

Fig. 6 Representation of the mathematical properties used to calculate localization.



 9

 

 
Fig. 7 The overall architecture in which PyTekkotsu comes into play.  Network Commands are sent 
between PyTekkotsu and the Tekkotsu Services. 
 
 PyTekkotsu works exactly the same way as the Java ControllerGUI used by 
Tekkotsu.  It sends commands over the network. Commands are sent over the network to 
the available Tekkotsu services that are running on the AIBO, e.g. main controller, walk 
controller, and head controller.  PyTekkotsu does not have access to any of the Tekkotsu 
internals. PyTekkotsu only talks to the simplest of the Tekkotsu services.  It does not 
have access to Tekkotsu’s EventRouter, so it cannot listen for button presses or vision 
events.  This is one of the biggest limitations of PyTekkotsu. 
 

7. Conclusion 
In conclusion we have made much progress over the last year.  We have tested and 
implemented a localization engine as well as completed work on wireless communication 
between the attackers.  Also, the attackers can now use each other’s information to avoid 
collisions.  A fuzzy logic engine has been created, implemented, and calibrated to greatly 
improve the accuracy and reliability of our ball tracking.  In the next year we expect to 
have all four dogs using localization and wireless communication. We also have many 
future plans to improve our behaviors and introduce more complex processes.  
 
Acknowledgments.  The authors would like to acknowledge Dr. C.J. Chung who has 
been the LTU Blue Devils Project Advisor since summer 2005.  Dr. Chung and Nathaniel 
Johnson have taken the time to revise and improve this paper.  Dr. Bindschadler has 
supported the LTU AIBO team since its creation as the Mathematics and Computer 

Python Interpreter 

Tekkotsu 

PyTekkotsu 

Tekkotsu Services 
 

AIBO Robot 
(actuators, sounds, 

IR, LEDs, etc.) 

TCP Network Commands PC 

AIBO 



 10

Science Department Chair.  He is also the LTU AIBO team’s senior project advisor for 
spring 2007. 
 

References 
 

1. Sony, "Sony AIBO." Sony. 25 Feb 2007 
<http://www.sony.net/Products/aibo/index.html>. 

2. "Tekkostu: Homepage." Tekkotsu. 23 August 2006. Carnegie Mellon University. 
23 Feb 2007 <http://www.cs.cmu.edu/~tekkotsu/>. 

 




