
Development of University Timetabling System By
Using Evolution Strategies and Simulated Annealing

 Endi Wu

 EDS PLM Solutions
 Troy, MI USA
 Endi.wu@ugs.com

Submitted to Dr. Chan-Jin Chung, LTU/MCS Department, in partial fulfillment of the requirements for

MCS 7033 Collaborative Research Project II class in Fall 2001

1. System Input Format

There are two files needed to create for scheduling. One is teacher schedule file that
includes time slots, room available, and teacher’s preference for the class. The other is
student survey data that includes time preferred by student for classes. The structure of
two files as follows:

Teacher schedule file:

Class taught time, * means can be
taught at any time, otherwise, this class
can be taught at only that specific time

e

S

T0 T1 T2 T3
3
C0 *
C1 *
C2 *
C3 T0
C4 T1

…

tudent survey file:

…

Class ID

Preferable T

Student ID
Time slots availabl
 Rooms available at one time slot

ime

0 C1 T1
1 C1 T0
2 C1 T2
3 C1 T1
4 C2 T1
5 C3 T0
6 C4 T1

1

2. Algorithm

Timetabling is the assignment of time slots to a set of events, subject to constraints on
these assignments. The NP-complete classes and time slots that bring highest score is a
constraint satisfaction problem after evaluating student preferable time. Here I introduce
two algorithms with different kinds of constraints to optimize the score.

2.1 Evolutionary Algorithm, 1 plus 1
Basic algorithm is initialize one schedule, using this schedule to generate another
schedule by random method, compare two schedule, higher score schedule will
survive and generate next schedule until no generate can be produced. During the
reproducing, a legal schedule needs to be found such that no room is expected to
accommodate more than one class at a time. The constraints for this problem can be
hard (strict) or generous.

2.1.1 Strict rule
Strict constraints are usually constraints that physically cannot be violated. This
includes events that must not overlap in time, such as:

�� Class must be taught by the specified time appointed by professor
�� One class taught by only one time

Algorithm

Schedule(parent)=Initialize schedule (init file)

For gen=1 to Maximum generation
do

Schedule(child) = generate(Schedule(parent))
While HardConstraint(Schedule(child) return ture
If (Score(Schedule(child)) < Score(Schedule(parent)))
 Schedule(parent) = Schdule(child)

 End for

2.1.2 Generous rule
Generous constraints are usually constraints that can be violated in certain range.
Because sometime illegal schedule will be adjusted to good result

 Algorithm

 Schedule(parent) = Initialize schedule (init file)

 For gen=1 to Maximum generation

 Schedule(child)=generate(Schedule(parent))

if (GeneralConstraint(Schedule(child))

 2

 If (Score(Schedule(child)) < Score(Schedule(parent)))
 Schedule(parent) = Schdule(child)

 EndIF
EndIF
Else
 If(InRange)
 Schedule(parent) = Schdule(child)
 EndIF
 Else
 Continues

EndFor

2.2 Simulated Annealing
The simulated annealing (SA) procedure uses the Metropolis Algorithm but varies the
temperature parameter T from a high value (system at “melting point”) to a low value
(system at “freezing point”). The full SA procedure for minimization is then as
follows (for maximization set E=-E):

 Initialize T

Generate random configuration X old

WHILE T > T min DO

FOR i = 1 to Nc DO

generate new configuration, X new

calculate new energy, E new

calculate �E = E new – E old
IF �E < 0 or random < prob = e -�E/T THEN

 X old = X new
 E old = E new

END IF
END FOR

reduce T
END WHILE

Where N c is the number of random changes in configuration at each temperature
and is chosen so that the configuration has reached a minimum energy state for
the current temperature. The variable random is a randomly generated number in
the range [0,1].

 3

2.2.1 Strict rule

Algorithm

Initialize T

Generate random configuration X old

WHILE T > T min DO

FOR i = 1 to Nc DO

generate new configuration, X new

IF (! HighContraint(X new))
 IF (inRange)
 X old = X new

 ENDIF
 ELSE
 continues

ENDIF
ELSE

calculate new score, E new

calculate �E = E new – E old
IF �E < 0 or random < prob = e -�E/T THEN

 X old = X new
 E old = E new

END IF
END FOR

reduce T
END WHILE

2.2.2 Generous rule

Algorithm

Initialize T

Generate random configuration X old

WHILE T > T min DO

FOR i = 1 to Nc DO

 4

generate new configuration, X new

IF (! HighContraint(X new))
 Break;
ENDIF
ELSE

calculate new score, E new

calculate �E = E new – E old
IF �E < 0 or random < prob = e -�E/T THEN

 X old = X new
 E old = E new

END IF
END FOR

reduce T
END WHILE

3. Sample Result

Sample Result Include

 Large number of classes

1. EC Strict with 150 classes, 2760 preferable time
2. EC Generous with 150 classes, 2760 preferable time
3. SA Strict with 150 classes, 2760 preferable time
4. SA Generous with 150 classes, 2760 preferable time
(Picture only)

Medium number of classes
5. SA Strict with 150 classes, 1337 preferable time
6. SA Generous with 150 classes, 1337 preferable time
7. EC Strict with 150 classes, 1337 preferable time
8. EC Generous with 150 classes, 1337 preferable time
(Picture only)

Small number of classes
9. EC Strict with 2 classes, 43 preferable time
10. EC Generous with 2 classes, 43 preferable time
11. SA Strict with 2 classes, 43 preferable time
12. SA Generous with 2 classes, 43 preferable time
(Picture, final class assignment using program and manpower)

 5

1. Evolution Computation Strict, 150 classes, total score: 443

2. Evolution Computation Generous, 150 classes, total score: 433

 6

3. Simulated Annealing Strict, 150 classes, total score: 383

4. Simulated Annealing Generous, 150 classes, total score 396

 7

5. Simulated Annealing Strict, 75 classes, total score 312

6. Simulated Annealing Generous, 75 classes, total score: 312

 8

7. Evolution Computation Strict, 75 classes, total score 339

8. Evolution Computation Generous, 75 classes, total score 351

 9

9. Evolution Computation Strict, 2 classes, total score 20

10. Evolution Computation Generous, 2 classes, total score 20

 10

11. Simulated Annealing Strict, 2 classes, total score 20

12. Simulated Annealing Generous, 2 classes, total score 20

 11

Student Survey File Teacher Schedule File

0 C0 T0 T0 T1 T2
1 C0 T1 2
2 C0 T2 C0 *
3 C0 T2 C1 *
4 C0 T2
5 C0 T2
6 C0 T2
7 C0 T2
8 C0 T0
9 C0 T0
10 C0 T2
11 C0 T0
12 C0 T1
13 C0 T2
14 C0 T0
15 C0 T2
16 C0 T0
17 C0 T1
18 C0 T1
19 C0 T2
20 C0 T1
21 C1 T1
22 C1 T1
23 C1 T2
24 C1 T2
25 C1 T0
26 C1 T1
27 C1 T2
28 C1 T0
29 C1 T1
30 C1 T1
31 C1 T2
32 C1 T1
33 C1 T0
34 C1 T1
35 C1 T0
36 C1 T1
37 C1 T0
38 C1 T1
39 C1 T1
40 C1 T2
41 C1 T2
42 C1 T2

 12

Class Assignment using program:

1. EC Strict with 2 classes, 43 preferable time
Result:

C0 T2
C1 T1
Score: 20

2. EC Generous with 2 classes, 43 preferable time
Result:

C0 T2
C1 T1
Score: 20

3. SA Strict with 2 classes, 43 preferable time
Result:

C0 T2
C1 T1
Score: 20

4. SA Generous with 2 classes, 43 preferable time
Result:

C0 T2
C1 T1
Score: 20

 13

Class assignment using manual calculation

C0 C1

 ----- -----
 T0 T0 6+5 =11
 T0 T1 6+10=16
 T0 T2 6+7=13
 T1 T0 5+5=10
 T1 T1 5+10=15
 T1 T2 5+7 =12
 T2 T0 10+5=15
 T2 T1 10+10=20
 T2 T2 10+7=17

 So result:

 C0 T2
 C1 T1
 Maximum Score = 20

4. Summary Results

1. Evolution Strategies (ES) with 1/5 rule performs better than Simulated Annealing
(SA) according to the graph result from large to medium size of classes.

2. Generous rule is approach to handle illegal schedules, which works fine with both
ES and SA.

3. ES with Generous rule once gave the best result ever found before while I was
testing the system. For 150 classes, it gave about 460.

 14

	Development of University Timetabling System By Using Evolution Strategies and Simulated Annealing
	Endi Wu
	Submitted to Dr. Chan-Jin Chung, LTU/MCS Department, in partial fulfillment of the requirements for MCS 7033 Collaborative Research Project II class in Fall 2001
	Class assignment using manual calculation

