Java Programming Default Project 2

Visualizing Evolution Strategies for Function Optimizations

This project is about visualization of numerical optimizations using Evolution Strategies.

When y=x, what is the value of x which produces the minimum value of y, where domain of x is between 0 and 10? Yes. When x is 0, the value of y is the smallest, which is 0.

Here is another simple problem. Now y = square of x. What makes the smallest y, when the domain range is between -2 and 2? Yes, x=0 makes the smallest y, which is 0.

You are supposed to solve the following optimization problem using a simple technique called Evolution Strategies.

y = squre of x1 + square of x2.

The problem is to find the value of x1 and x2, which produce the minimum value of y.

Many mathematical methods have invented, especially using partial derivatives. But, do not worry; here we do not use mathematical ways. We use our common sense!

Graphically, optimization (minimization) problem can be viewed as trying to find the lowest point in a landscape. You can imagine an explorer wandering through valleys across through plains in search of topological extremes.

We use that idea. We populate an agent, a problem solver in the population space. This guy (Adam??) is evaluated in the beginning. This initial parent produces its child, here, at random, in the hope that the child will live a better life. But, alas!, only one agent can survive in the pace since the resource (food) is limited. Right after the birth, only one agent which is better has to be selected to continue the agent-race. That means either the parent or the child can survive and become a next parent for the next generation. We repeat this process until we get the minimum value.

Rechengerg originated the idea using 2 agents in (1964) 1973.

Question 1. How do we generate the initial agent?

Use a uniform random number generator with domain ranges.

Question 2. How do we produce a child?

Method 1 (the simplest way)

The function gauss(0, 0.1) will give you a Gaussian normal random number to make a variation for each x1 or x2. For example,

· child's x1 = parent's x1 + gauss(0, 0.1)

· child's x2 = parent's x2 + gauss(0, 0.1)

Method 2: 1/5 rule

What is the optimal value for the variance? Is it static or dynamic? Rechenberg postulated 1/5 success rule for his Evolutionary Strategy as follows:

From time to time during the evolution process check the ratio of the number of successes to the total number of trials (variations). If the ratio is greater than 1/5, increase the variance; if it is less than 1/5, decrease the variance.

Based on this idea, introduce a derived class "Society" from "population". The new class Society can contain:

· Success Counter to count number of variation successes.

· The current stepsize.

· A constructor to initialize the Success Counter as 0 and the initial stepsize as 0.85

· A new select member function for this society to increase success count, when child is better than parent

· A new member function, updateStepsize. This function is called every WindowSize generation to check the following:

IF success counter > WindowSize*0.2

 stepsize = stepsize / 0.82

Else If success counter < WindowSize*0.2

 stepsize = stepsize * 0.82

Then success counter is reset to zero.

Define default WindowSize as 50, that is the above function is called every 50 generation.

Question 3. How do we select the next parent?

It is simple. Just compare the evaluated value between parent and child.

Question 4. What’s next?

Keep on repeating the generations until you produce an acceptable child.

Project Requirements:

· User-friendly GUI to visualize the optimization process using both methods, Simple and 1/5

· Trajectory

· Changing default values

· Slow motion mode / Quick mode / Click mode

Extra Credits

Contour lines

