
In leader-follower autonomy (LFA) systems, autonomous vehicles are given the
capability to follow other autonomous vehicles’ paths. However, human-vehicle LFA
systems had never been demonstrated in the literature until Schulte et. al. in 2022.
The Southfield LFA System (SLS), demonstrated on Autonomous Campus Transport
1, a small modified Polaris Gem 2 (See Figure 1), features a modular pipeline made
using the Robot Operating System (ROS) to translate human body language into
vehicular motion. A camera mounted in the car looking through the windscreen
produces a live feed of the activity in front of it. The camera would transmit the frames
to an object recognition node powered by Darknet/YOLO to detect the target human
and crop and resize the image of the person to the required size for the Pose
Estimation module [1-3]. Pose estimation uses a Google-developed pose estimation
neural network that translates an image into pose data, which consists of the location
and confidence scores of 17 points on the body [3]. The pose data is then fed to a
dense neural network of our own design, which produces a predicted command (start:
begin following; stop: stop following; none: continue with current behaviour). The
prediction is then translated into commands for the vehicle’s drive-by-wire system [4].

One issue with the SLS was the loss of target persistence, which occurred when the
user was close enough to a third-party that their detections would overlap. The SLS
used a closest-match algorithm to figure out which target is correct based on the
previous frame. We have improved this using a bipartite mapping method, which
ensures that each element in one set is linked to at most one element from another
set. In this case, it finds the best match of detections between frames [4, 5].

METHODS
Neural networks are algorithmic structures designed to perform machine learning, i.e. training a
model on datasets in order to make predictions on unseen data. We use Tensorflow with Keras
to train and implement the model [6, 7]. Communication between components is handled by
the Robot Operating System, a platform for distributed control of software and hardware
systems using a set of logically connected nodes, which transmit and receive messages as
needed [8].

Our training dataset consists of three poses, each with 1700-2000 images. “Start” indicates that
the ACTor should start following the user. That user is now designated as the “target”. “None”
means that the user is giving neither start nor stop commands, and the ACTor will continue
with the previous command. If set to follow, the vehicle will track the target (now using bipartite
mapping) and attempt to keep within a few meters of the target using the ACTor’s LIDAR. If set
to stop, it idles and waits for a start command. A “Stop” pose commands the ACTor to end
following behaviour if applicable, unmarked the target, and waits for a new “Start” command.
Each pose is shown in Figure 2.

Our gesture-recognition system uses a modular pipeline of our own design, which is shown in
Figure 3. A camera mounted to the front of the car takes a live feed of the user in front of it.
Each frame is sent to a node running YOLO/Darknet, a pre-trained object detection system.
YOLO returns the shape of the bounding box surrounding each person it detects. These
detections are then sent to a node that manages detection matching. Our original system used
a simple algorithm to return the closest match between detections in subsequent frames. This
is used to ensure that control remains with a single user when following is activated, meaning
that a second human cannot inadvertently interrupt the program through errant commands.

However, this led to problems with target persistence. If a bystander was close enough in the
frame to the target that their detections merged, the targeting system would tend to become
confused. This would result in manual program interruption for safety. We thus chose to use a
bipartite mapping algorithm, which constructs a relationship between two sets where each
element in one set is linked to at most one element from another set, demonstrated in Figure 4.
The algorithm works by finding a minimal matching of a weighted bipartite graph representing
the sets, hence the word “bipartite.” When a new frame is captured our algorithm starts by
using data from previous frames to predict where each of the detected objects should be in the
new frame. It then builds a list of links between the known objects and the detections in the
new frame sorted by how close they are to the prediction. The algorithm then goes through
each link from closest to farthest and either keeps a link if neither object has been used or
discards it if either node has already been linked. The remaining links form a minimal matching,
which represents a mapping between existing and new detections, and is used to assign
persistent object IDs and perform motion smoothing on all detections, improving the
effectiveness and safety of the SLS.

Relevant detections are then cropped, resized, and given to a gesture injection node which
contains two key components. The first is a pose estimation model developed at Google which
returns the location of 17 body points in the image. Each point also has a confidence score.
This reduces an image with potentially millions of data values to a set of 51 points,
which is much easier to analyze. The pose data is then given to a simple neural network of
our own design, which returns a command prediction based on the data. This command is then
given to a node that interfaces with ACTor 1’s drive-by-wire system, which gives movement
commands to the vehicle. A diagram of our ROS node architecture is shown in Figure 5, and
the diagram of our classifier is shown in Figure 6.

We have shown that bipartite mapping can be used to resolve the problem of target
persistence in a human-vehicle LFA system. The SLS is now much more robust to
interference from bystanders and other potential users. We envision application of the SLS in
material transport on factory floors, construction sites, and loading bays. We also see
applications in valet parking contexts. In terms of future work, we see the possibility of
exchanging our two-dimensional pose estimation model for a three-dimensional model. This
would allow us to expand our pose repertoire and mitigate issues with false-positive gesture
detections, where the SLS believes that it has detected a pose when none are being shown.
We can add this component smoothly into our pipeline due to our modular design paradigm [4].
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Figure 3: Diagram of the gesture recognition pipeline.
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Figure 1: The ACTor1 Platform following author M. Kocherovsky.

Figure 7 shows the bipartite mapping component in action. First, Authors J. Schulte and M. Kocherovsky prepare to cross each others’ paths perpendicular to the
frame’s angle, i.e passing in front or behind of the other. In the middle image, the crossover occurs. It is clear that both authors are identified separately as persons.
Finally, after the crossover, there is no confusion of which person is which. Their identifiers (person 0 or person 1) are the same as they were before. This indicates
that the algorithm is working as intended.

Figure 5: Diagram of ROS node architecture in the SLS
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Figure 6: Diagram of our gesture recognition classifier. This does not include 
object detection or pose estimation modules.

Figure 2: Author J. Schulte performing each pose

Figure 4: Left: a set demonstrating non-bipartite mapping as elements in each set are linked to more than one elements in 
the other set. Right: bipartite mapping is demonstrated because no element is linked to more than one other element.

Figure 7: Left: authors J. Schulte and M. Kocherovsky prepare to cross each other in the camera’s view. Middle: J. Schulte passes in front of M. Kocherovsky. 
Right: the two separate and their identifiers are unchanged.
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