
An artificial neural network (ANN) is a data structure designed to perform machine
learning algorithms. A network is “trained” on a set of example data and target outcomes
in order to mimic patterns between the input and intended output [1]. However, the
programmer does not know which ANN hyperparameters (structural elements) are
optimal for any given problem. They can look at reference materials, but if a problem is
entirely new, their best course of action might be trial and error. This can be a very time-
intensive process.

A solution to this problem comes in the form of evolutionary strategies (ES). ES
algorithms, more specifically ES(1+1), works by starting with a parent value or set of
values. This can be any value for any function that the programmer wants to optimize.
The parent is evaluated on the intended function to find its fitness. A child is then
produced by copying and mutating (tweaking) the parent values. If the child has a better
fitness than the parent, then the parent is discarded and replaced by the child. If the
child performs worse than the parent, the child is discarded and the parent is re-used.
This continues for some number of generations until either an acceptable (guaranteed
to be near-optimal) solution is found or the program has exceeded the maximum number
of generations. Multiple trials of the algorithm can be run until a solution is found or the
program has run the set number of trials. This is advisable due to the random nature of
ES programs. The ⅕ success rule can also be applied to the problem to better fine-
tune searching. The rule states that if the program has a certain ratio of successes
(better performing children) to attempts (defined by a certain window size) or higher,
then the step size (range of mutation) should be increased to expand the search space,
perhaps finding more solutions. If the ratio is worse, then decrease the step size and find
a more nuanced approach. It is called the ⅕ rule because the ratio should be successes
to one-fifth of the window size [2].

We show that ES(1+1) can be used to find near-optimal parameters for neural networks
that can solve the two-arm intertwined spiral problem. The non-linear nature of the
problem can make it difficult to find the optimal hyperparameters, but we have achieved
this goal using ES(1+1) 1/5.

METHODS

We use the Tensorflow and Keras libraries in Python 3 to evolve a set of
hyperparameters for neural network design [3,4]. We mutate the following
hyperparameters: number of hidden layers in the network (1-7), number of neurons in
each hidden layer separately (1-64) (together these parameters control the amount of
logical processing units in the network); the learning rate, which determines the rate at
which parameters (network weights) are tweaked between predictions during training;
the activation function, which determines how output values are “squashed” before
moving to the next layer; the batch size, which determines how many samples are
passed to the network at once during training; the optimization algorithm used to
minimize error; and the number of epochs the network is trained on.

There are up to 15 trials, each of which has up to 35 generations. The program would
stop once an acceptable solution (which gets an error within 0.02) is found. The model
is trained on a set of 400 points where each class has 200 data points. The program
generates a new dataset each time it is ran. The training dataset is shown in Figure 1.

The x-coordinate of each point is calculated using the formula 0.1mt*cos(t)+x_i, and the
y-coordinate of each point is calculated using the formula 0.1mt*sin(t)+y_i, where m is a
value controlling the direction (1.0 for red and -1.0 for blue), t is a random sample from
the normal distribution (valued between 0 and 10), and x_i and y_i are sampled from a
gaussian distribution with a mean of 0.0 and a variance of 0.03. The model takes in the
x and y coordinates as input, and outputs the expected class value (between 0 for red
and 1 for blue).

After a near-optimal model is found, it is tested on a randomly generated test set with
500 points in each class (1000 total), and its accuracy is measured. Finally, the model
made predictions on a grid of points from -1.0≤x≤1.0 and -0.75≤y≤0.75 to see the
overall shape of the model’s training.

The final model was trained using 380 epochs and had an average mean squared
error of 0.01400. The loss over time for the model’s evolution is shown in Figure 2.

Our results demonstrate that ES(1+1) with ⅕ success rule can be used to solve the
intertwined spiral problem by finding a near-optimal neural network to distinguish
between two arms of the spiral. The automation of iterative neural network design can
be used to improve productivity for researchers and AI engineers. Though this can still
take a long time, the guided random optimization can be far more precise than human
trial-and-error, thus improving productivity. As computing power continues to improve,
ES-developed neural networks could very well become the norm for neural network
development.

Mark Kocherovsky, MS Computer Science Candidate; CJ Chung, PhD, Professor
Department of Math & Computer Science, College of Arts and Sciences

RESULTSDESIGN

INTRODUCTION

DISCUSSION

Using Evolutionary Algorithms to Optimize Hyperparameters for Keras Deep
Learning Models to Solve the Two Intertwined Spiral Problem

REFERENCES
[1] F. Chollet. Deep Learning with Python, 1st ed. Apress: Berkeley, CA, 2017; Manning
[2] M. Schumer, K. Steiglitz. Adaptive Step Size Random Search, in IEEE Transactions on
Automatic Control, Vol. AC-13, No. 3, (1968). found in https://arxiv.org/pdf/2006.11026.pdf
[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Tal-war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Víegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems (2015), software available from tensorflow.org.
[4] M. Gorsline, J. Smith, C. Merkel. On the Adversarial Robustness of Quantized Neural Networks.
(2021).

The model was able to make predictions on the test set with 98.10% accuracy! This indicates a very well trained network. A diagram of the test set next to the
model’s predictions is shown in Figure 3. Table 1 shows the hyperparameters for the best model and the range across seven accepted tests. An accepted test
produces a sufficiently optimal model. Figure 4 shows a diagram of the best model. Figure 5 shows the model’s results when applied to a grid of points. A spiral shape
is clearly visible.

Figure 1. Training dataset for the final model.

Figure 2. Loss for each generation for the final model.

Figure 3. Left: the randomly-generated testing set that the model is tested on. Right: the predictions returned by the model for each point in the testing set. It is
mostly accurate, but does make some errors. If you cannot easily tell the difference between the two pictures, then the model has done its job!

Figure 5. Diagram of the model’s prediction on each point on the given grid.
This shows the overall shape of the spiral it has learned. The edges of the
spiral, particularly on the top right, are mainly a guess based on adjacent

data. Other than that and the red pincer in the top-center, it approximates a
spiral. It can also be seen that the shape roughly approximates the training

data, and any gaps in the training data explain gaps in the shape.

Hyperparameter Best Model Value Range Across Tests

Generations 30 [2, 34]

Error 0.01400 [0.00568, 0.01755]

of Hidden Layers 5 [2, 5]

of Neurons per Layer 12 | 12 | 15 | 11 | 16 [11, 15]

Learning Rate 0.01 [0.01, 0.05]

Activation Function Exponential Linear Unit See Figure 6, G1

Batch Size 4 [1-4]

Loss Function Mean Squared Error See Figure 6, G2

Optimizer RMSProp See Figure 6, G3

Epochs 380 [380, 400]

Table 1: Table of the final network’s hyperparameters and the range of
hyperparameter values seen across seven accepted (produced a sufficiently
optimal network) trials. A diagram of the structure can be seen in Figure 4.

For the three discrete values; the activation function, loss function, and
optimizer, see the three frequency graphs on the poster.

Input Layer - Two Input Neurons

Dense Layer - 12 Hidden Neurons

Dense Layer - 12 Hidden Neurons

Output Neuron

Dense Layer - 15 Hidden Neurons

Dense Layer - 11 Hidden Neurons

Dense Layer - 16 Hidden Neurons

Figure 4. The structure of the final model after being trained on 380 epochs. In
addition to these parameters, the model also uses a learning rate of 0.01, the
exponential linear unit as the activation function, a batch size of 4, mean squared
error as the loss metric, and the RMSProp optimizer.

Figure 6. G1: Frequency of activation functions across seven accepted tests. It seems that all three of them are viable strategies. G2: Frequency of loss functions across
seven accepted tests. Mean squared error (MSE) clearly dominates. G3: Frequency of optimizers across seven accepted tests. RMSProp clearly dominates, though SGD

and Adam have been successfully used in one case each.

ABSTRACT
Deep learning models have a set of associated hyperparameters that can be thought of
as tuning knobs. As the hyperparameters specifically determine a neural network's
structure, they cannot be learned from training data. The programmer does not know the
best model structure to use for each problem out of hand. They can use rules of thumb,
references on similar examples, or manual trial-and-error to find the best model. Here
we propose the use of Evolutionary Strategies to find optimal hyperparameters for
densely-connected neural networks to solve the Two Intertwined Spiral Problem as an
example. In this study, we optimize the number of hidden layers, the number of neurons
in each hidden layer, the learning rate, the choice of activation function, the batch size,
the choice of the loss function, the choice of the optimizer algorithm, and the number of
training epochs. The results show that this approach is an effective way to design and
find optimized neural network models.

Research Day, April 22, 2022

	Slide Number 1

