
Research into autonomous vehicles (AV) – vehicles that are capable of operation
without human input – has seen large strides in the past decade. With traditional
methods, road lanes and signs are determined using analysis of a camera’s view.
Though neural networks have been used in experimental AVs since the late 1980’s [1],
neural networks have become a much more viable technique in the last several years
due to advances in algorithm design and computational power [2]. DeepSteer aims to
train a neural network to steer an AV based on input from a front-facing camera on the
vehicle. Given a picture of the road in front of the AV – our Autonomous Campus
Transport 1 (ACTor 1) platform (seen in Figure 1) – DeepSteer attempts to predict the
correct angle for the steering wheel. DeepSteer is also significant because our project is
for steering on roads without lane markings.

DeepSteer was originally made using convolutional neural networks (CNNs) in
TensorFlow 1 [3,4] and compared a CNN+pure DNN combination with CNN+DNN+RNN
structures. The recurrent neural network (RNN) and its variations introduce temporal
history to the neural network learning process, which is useful in sequential data
analysis.

We present a new version of DeepSteer, upgraded to TensorFlow 2, using an expanded
dataset and more analysis of the various structures (CNN+DNN, CNN+DNN+RNN,
CNN+DNN+LSTM, CNN+DNN+GRU) to show that on the whole, the RNN structure
combined with manual pruning techniques produces the most accurate model when
tested on unseen data.

METHODS
Neural networks are algorithmic structures designed to perform machine learning, i.e.
training a model on datasets in order to make predictions on unseen data. A basic dense
neural network (DNN) has a set of processing neurons organized in layers logically
connected to the immediate previous and next layers. These connections are
represented by values called “weights”. The neurons take in input values from the
previous layer and perform aggregation operations using the associated weight values.
The network “trains” by repeatedly tweaking weights based on error in predictions using
a given training dataset. Once a model is sufficiently trained, it can be used to predict
values based on unseen data. Convolutional neural networks (CNN), a variation on
DNNs, are often used in image recognition tasks. They use feature maps to learn
abstract features common to the training set of images. Recurrent neural networks
(RNN), and their variations of long short-term memory (LSTM) and gated recurrent units
(GRU) allow neural networks to adjust weights not just on the data content, but the
temporal sequence of data entry [3,4].

DeepSteer’s associated datasets were collected by driving ACTor1 down a set of paths
with a program that would save an image of the path in front of it together with the
steering wheel angle at that time. During training, the model learns to predict the
steering angle from the picture. The structure of each network is as shown in Figure 2.
The Time-Series Layer (RNN, LSTM, or GRU) can be reconfigured and even removed
using different options in the training program.

Each network structure was measured twice: once with the full training set, and once
with a pruned training set. Pruning is a data engineering practice where elements in
the set are removed because they might mislead the network during training. We first
manually pruned elements because they indicated a low angle when a curve was
approaching. Then a number of images were removed at random because the number
of low-angle inputs greatly outnumbered the high-angle inputs, introducing bias into the
program. Figure 3 shows an example of high-angle training data, and figure 4 shows the
frequency of low and high-angle turns. However, some data was taken with an offset,
which may have inadvertently interfered with training. [3,4].

DeepSteer proves that Recurrent Neural Networks can be used to direct
autonomous vehicles. RNNs can predict the steering wheel angle of a car based on
the view of the road in front of it to within 0.2 radians of the correct value on average.
However, more work is needed to improve the prediction accuracy. First, more data,
especially at higher turning angles, needs to be collected. The new data should also
include different environmental conditions, such as precipitation, traffic, and different
road markings. The data might be able to be further pruned and organized to improve
time-series sequentialism. Finally, the model architecture could be further refined within
the RNN framework to better control the training process.
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InceptionV3 Pre-Trained Network (frozen top 80% of layers)

InceptionV3 Pre-Trained Network (fine tuning bottom 20% of layers)

Dense Layer - 1024 Hidden Neurons

Time-Series Layer - 1024 RNN, LSTM, or GRU Neurons

Output Neuron

Flattening operation

Reshape to (1,1024) 
structure

Loss MAE
Dense 0.1198 0.2248
Dense (Pruned) 0.0829 0.1916
RNN 0.1095 0.2211
RNN (Pruned) 0.0721 0.1799
LSTM 0.1166 0.2243
LSTM (Pruned) 0.0875 0.1846
GRU 0.0996 0.2028
GRU (Pruned) 0.0791 0.1865

Figure 1: The ACTor1 Platform - N. Paul

Figure 4: Amount of inputs before pruning; high angle inputs are 
greatly outnumbered by low-angle inputs

Figure 6: Comparison of pruned and non-pruned models by architecture. Left: graphical comparison of each model’s MAE. The non-pruned Dense (CNN+DNN only)
bar is highlighted in red to indicate that it is the worst model overall, and the pruned RNN (CNN+DNN+RNN) model is highlighted in green to indicate that it is the best
model overall. Right: Numerical comparison of each model’s loss and MAE values. The pruned RNN model is highlighted in green to indicate that it is the best model
overall, and the non-pruned Dense model is highlighted in red to indicate that it is the worst model overall.Figure 3: an example of a training data sample. The file’s name is 

151_-1.1275, indicating that it is the 151st file in that run and the 
vehicle is turning right at an angle of 1.1275 radians

Out of the models trained without pruning the data, the GRU had the best performance, with a mean average error (MAE) of 0.2028 radians. The difference in MAE
between the best and worst models was 0.022 radians, indicating very close agreement. However, analysis of all four models shows that the model is far less
accurate on high-angle turns than on low-angle turns, which indicated evidence of a biased dataset. This analysis is shown in Figure 5. Despite the offset, the models
performed close enough to conjecture that the offset did not significantly interfere with training, though this would require further study.

The best model after pruning was the RNN model, with an MAE of 0.1799 radians. Even though the MAE difference between the pruned and non-pruned models is
very small, all pruned models outperformed each non-pruned model. This becomes even more clear when looking at the predictions themselves: the pruned
models appear to have much more accurate predictions than their non-pruned counterparts. Figure 6 shows a comparison of each model’s experimental results, while
Figure 7 shows an example prediction on a testing image.

Figure 7: A test dataset sample run through the model. Though the actual turning
angle was about 0.52 radians to the left, the model predicts that it was turning at 0.50
radians. This is a very close result, indicating that the model works as designed.
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Figure 2: The model uses the InceptionV3 pre-trained model. This allows us to 
leverage a powerful premade component without having to spend considerable 
man-hours training a model to recognize basic visual features [4].

Figure 5: Graphs demonstrating the performance of each model on each element in the testing set. Red lines indicate the correct value associated with each element,
while blue dots represent the predicted values for that element. Both sets of results are normalized by their max values and use the same axis, with the most extreme
outliers outside the y-axis range for clarity. Left: before pruning, even though the models have approximately 0.2 radians of error on average, it still shows incredibly
poor performance on high-angle inputs, and better performance on low-angle inputs. Right: After pruning, even though predictions of high-angle inputs are worse than
on low-angle inputs, the problem is somewhat mitigated as the model is more accurate on those elements.
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