
Dungeons and Dragons is a classic tabletop role-playing game 
which was first publicized in 1974. This game has remained 
popular over the years, and continues to get new additions to the 
current day. However, the ongoing Covid-19 pandemic has made 
it challenging for players to engage with the game. Dungeons and 
Dragons was designed to be played around a table with a group 
of other people, which is a problematic environment for those who 
are attempting to maintain social distancing. There are, of course, 
certain online resources such as www.roll20.com or 
www.dndbeyond.com which provide a virtual platform for playing 
the game, and these resource have been available since long 
before the outbreak began. While these resources typically 
attempt to provide some degree of automation for common events 
in the game, such as making attack rolls and saving throws, there 
is a great deal of game content which still requires user 
maintenance. The objective of this project is to create a game 
library which eliminates this user maintenance by automating all 
interactions between core game elements. This automation will 
serve many purposes, such as allowing newer players to engage 
with the game without an in-depth knowledge of the game 
mechanics, allowing players to focus on the role-playing aspect of 
the game without worrying about the math governing character 
interactions, or opening the door to certain game mechanics 
which typically bog down gameplay due to their scale or complex 
nature.

Abstracting Features of the Game 
Dungeons and Dragons is a game which is regulated by a 
complex system of rules. However, any given rule is typically 
straightforward and unambiguous. Furthermore, all game rules 
appear to adhere to certain patterns. As it is discussed in Results 
& Summary, this pattern was eventually discovered to be 
applicable to most games rather than exclusively to Dungeons 
and Dragons. However, the existence of this pattern allows for the 
game features to be abstracted into a smaller number of 
developer-friendly data types. There are currently five core 
elements identified in this pattern: game pieces, potential behavior 
of game pieces, actualized behavior of game pieces, modifiers 
applied to game pieces, and items or artifacts which can be used 
or controlled by game pieces. These elements are represented by 
Java data types as follows:

1. GameObject: this data type represents any game piece which 
would appear on the game board.

2. Task: this data type represents a set of potential behavior 
available to a GameObject, as well as the resource cost for 
actualizing the behavior.

3. Event: this data type represents GameObject behavior which 
has been actualized in virtue of invoking a Task.

4. Effect: this data type represents a modifier which has been 
applied to a GameObject.

5. Item: this data type represents any physical artifact which 
might be controlled or possessed by a GameObject.

The library includes a small selection of default derivations of 
these data types for common Dungeons and Dragons 
phenomena, such as making attack rolls and saving throws or 
having proficiency with certain items, but these data types are 
designed to reference Lua scripts external to the library. These 
Lua scripts define the specific behavior of these core objects, 
allowing the client software to introduce customized game content 
simply by providing a collection of Lua scripts. The library then 
facilitates the interactions between these customized data types. 
The process of invoking an Event is detailed in Figure 3.

METHODSINTRODUCTION

RESULT & SUMMARY

The Design and Development of a Dungeons and Dragons Game Library
and an Example Client Interface

Calvin Withun and CJ Chung
College of Arts & Sciences, Lawrence Technological University

To the extent that it has been developed and tested, the library 
functions correctly and without error. Although the client program 
does not utilize the complete suite of features made available by 
the latest library code, it demonstrates the functionality of the 
core behavior of the library. Further development of the client 
would make the full library available to the user. The library itself 
is currently incomplete, however. While it supports the core data 
types, certain phenomena which are iconic to Dungeons and 
Dragons such as casting spells are not yet supported. Further 
development is necessary before this project can boast that it 
automates all Dungeons and Dragons interactions.

The core data types identified by this project can model many 
games beyond just Dungeons and Dragons, such as Pokémon. 
The hard-coded derivations of the core data types intended for 
Dungeons and Dragons could just as easily be made to fit the 
theme of other popular games. If this project gains popularity, it 
might eventually branch out to provide similar automated 
interactions for other currently un-automated games. Visit 
https://www.youtube.com/watch?v=fWYXNlZpVIU for a short video 
presentation on this project.

References
[1] Gamma, Erich, et al. Design Patterns Elements of Reusable Object Oriented Software. 1st ed., 
Addison Wesley, 1998.
[2] Bechtold, Stefan, et al. JUnit 5 User Guide, 26 Oct. 2020, 22:06:33, 
junit.org/junit5/docs/current/user-guide/.
[3] Roseborough, James, et al. “Luaj/Luaj.” GitHub, 1 Apr. 2020, github.com/luaj/luaj.

Interacting with Lua Scripts from Java
Lua is its own distinct programming language, and Java does not 
inherently know how to compile it. However, there is an open-
source Java library called LuaJ which makes this interaction 
possible. By creating virtual machines which can process Lua 
scripts, LuaJ allows Java programs to function with logic and data 
defined by Lua scripts.

Each of the core data types are extensions of a Java class 
named Scriptable, which is dedicated to interacting with the LuaJ
library. If a core data type class wishes to query the Lua script 
which it references, it must do so through the functions made 
available by Scriptable. In this way, if a different means of loading 
external logic is desired at some later time, it will involve minimal 
changes to the library architecture.

Library Architecture
The architecture of this library has evolved over the course of its 
development. Every architectural change has moved the project 
towards a more generalized, more abstracted collection of data 
types which give the client more power to define customized 
game content. The current library architecture can be seen in 
Figure 2 as an Entity Relationship (ER) diagram.

Developing an Example Client Interface
The current client interface renders a 2-dimensional view of the 3-
dimensional game space, upon which each GameObject is drawn 
as a blue square. A GameObject may be selected by clicking on 
it. The selected GameObject is drawn as a red square so long as 
it is selected. Two horizontal scrollbars at the bottom of the 
screen display the Tasks available to the selected GameObject
(left) and the Events queued by the selected GameObject (right). 
These scrollbars contain 1 button per Task or Event. When 
clicked, those buttons will invoke the appropriate Task or Event. 
However, the client currently has a bug which prevents the 
scrollbars from updating, so the GameObject must be deselected 
and then reselected to see any changes. The client interface 
does not implement most features made available by the most 
recent library code. This is due to a lack of experience developing 
graphical interfaces on the part of the developer, as well as the 
secondary nature of the client program in comparison to the 
library itself. A screenshot of the client can be seen in Figure 4, 
and Figure 5 shows example console output generated by the 
game library.

Testing the Library
As the client is insufficient for running manual tests, the library is 
tested by executing unit tests on its components with JUnit 5. 
Every feature of each data type can be tested in this way, as can 
the interactions between various different objects. The current 
suite of Junit tests does not cover the entire library, as it was 
implemented after the architecture of the project became 
sufficiently stable to support such tests. However, of the test 
cases which have been defined and which have been addressed 
by the library, every test passes without error. See Figure 6 for 
the results of the most up-to-date Junit tests.

Figure 4: Client Graphical Interface
This client features two GameObjects on the game board (red selected, blue not 

selected).

Figure 6: Junit 5 Test Results
All test cases except for 1 pass. The one failure is due to a feature that is not yet 

implemented, but which is desired.

Figure 2: Entity Relationship Diagram 
for Core Data Types

Figure 1: Core Data Types Class Diagram
The “…” class block represents yet-unimplemented concrete derivations of GameObject

Figure 3: Flow Diagram for
Invoking Queued Events

Figure 5: DNDEngine Console Output
Typical console output generated by the game library. This output is intended to eventually 
be recorded in log files for debugging purposes, but this feature has not been implemented 
yet. This output is not presented on the client software window as it is not intended to be 

directly viewed by the user.

http://www.roll20.com/
http://www.dndbeyond.com/
https://www.youtube.com/watch?v=fWYXNlZpVIU

	Slide Number 1

