Holland

L
il
| -
o
2

e
ly
;e

ter
re~

L),

eita-
ifi-
nec-

\dyse
sarnes

lemie
klung
.eme,
1y of
es of
link
}, red

SDL ’89: The Language at Work
0. Fergemand and M.M. Marques (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1989
377

USING SDL IN SWITCHING SYSTEM DEVELOPMENT

Chan J. Chung, Jin P. Hong, Wan Choi, Han K. Kim, and Young K. Lee

Electronics and Telecommunications Research Institute,
P.O. Box 8, Dae Dog Danji
Chungnam, Republic of Korea

This paper presents a way and experiences using SDL(CCITT Specification and
Description Language) in developing TDX-10 switching system. We exploit SDL
to specify a functional behaviour of the system from the external point of view, to
design software structure and behaviour, and to derive implementations. Some
guidelines are necessary to use the language intellectually. It needs to be backed
up with sound development tools for ease application[2]. Our experience has been
showing that the use of SDL in the context of large switching system development
has made marvelous contribution to both improvement of specification quality and

enhancement of software productivity.

1. INTRODUCTION

Today’s telecommunication systems of which distinguished characteristics are real-time,
embedded, interactive, and distributed one are said to contain inherently some of the largest
and most complex software ever constructed. The key to successfully develop such a system
is to clearly specify "problems” and to transform them into a viable implementation. At the
heart of this lies the choice of an appropriate formal language[2] to ensure clear specification
of desired systems and to facilitate unambiguous communication among people involved in a
project. The advantages of using a formal language are[13]:

the human being is forced by the representétion rules to fill in all the significant
details required by the interpretation model. Shortly, it forces you to think

- the representation allows one and only one interpretation, independent of the reader

the specification can be processed by computer tools to provide information on con-
sistency, completeness, deadlock analysis, and simulation etc.

- the specification can be used as a prototype(can be executed)
the specification can be automatically transformed into an equivalent program code.

TDX-10 is a large-scale digital switching system which has been being developed by
ETRI(Electronics and Telecommunications Research . Institute) since 1987 funded by
KTA(Korea Telecommunication Authority) in cooperation with four domestic manufactur-
ers[10]. Before initiating the project, we decided to use SDL and CHILL(CCITT High Level
Language) in accordance with CCITT recommendations, and tried to set up the SDL/CHILL
,based development methodologies on the basis of experience with the previous TDX-1 switch-
ing system development project in which software engineering approaches are not applied ade-

quately.
Adaptation of SDL in the TDX-10 development methodologies are intended to fix logical

problems by formalizing the system’s external behaviour prior to the- beginning of system
implementation, to describe physical model for realization, and to derive implementations.

378

Also, it is our another important policy to use SDL as a standardized vehicle to communicate
among developers, because more than 500 system engineers and software engineers from six
independent organizations in different places have been involved in the project.

2, TDX-10 DEVELOPMENT METHODOLOGIES

In general, the development of digital switching systems requires well defined methodologies
in order to coordinate works of thousands of people due to the nature of their complexity and
massive scale. The methodologies define the methods which are set of rules streamlining sys-
tem development process and may be supported by various set of tools[8][12]. Work metho-
dology is critically important for ensuring the successful development of any large and com-
plex system, where typically continuous work is required to fix deficiencies in the initial
design, to add new functions, to adapt for the new market fields, to modernize architecture of
system in accordance with the technology advancement, or to upgrade user functions.

Figure 1 shows our development approaches from user’s requirements to implementational
blocks, and depicts their relationships[10].

In terms of TDX-10 development methodologies, concrete requirements are defined to be used
as a written contract between customer(user) and developer, by investigation and inspection of
user requirements which are usually ambiguous, incomplete, and inconsistent. During defining
requirements, conceptual model that shows philosophy of basic structure and behaviour is
defined to achieve conceptual integrity among various developers[12]. Requirements definition
document specifies everything that the end-users do see, including features (functions from the
user’s point of view), external-interfaces in the system environment, input/output operational
messages from/to external-interfaces, and non-functional constraints such as time limits.

Functions are formally redescribed from requirements in accordance with what the system to
do rather than how they are to be implemented. A formalized operational function
specifications can show the external behaviour of required system and allow us to predict how
the system will behave, and to verify whether the system behaviour will be acceptable in early
stage of system development[12].

A functions is subject to transformed into one or more blocks which are the basic development
unit in design and realization. The concept of the transformation is from "What(problem
domain-oriented)" into "How(implementation domain-oriented)". A block is realized purely
with software only, hardware only, or both software and hardware. The interfaces between
blocks are defined as messages. Subsystems are formed by grouping blocks. After software
blocks are designed and implemented, a basic test is performed on the simulated and/or real
environments for each block.

Having been incrementally integrated by adding the individually tested blocks the (part of)
system is verified on the real environments whether a certain function meets its specification.
After all functions are tested, the entire system is verified and validated if the operation of the
system meets the requirements for the field trial and commercial operation.

3. THE USE OF SDL IN TDX-10 DEVELOPMENT

Currently, SDL is used to specify the behavior of functions and to design the internal structure
and behavior of blocks. Block descriptions can also be used to derive implementations.

F e e m e e, ———————

31 1

As shi
specifi
cess d
the en
systenr
Usuall
which
are spe

379

micate
xm six :

ologies
ity and
1g sys-
metho-
i com-

initial
ture of

conceptual
model
definition

rational ' Requirements definition

e used
stion of
lefining
jour is
finition
‘om the _
rational

Redescribe

stem to
unction [
ict how
in early

opment
yroblem

i | Block | | Block | [Block | | Block :
purely E 1 2 3 4 E
= j

Block Block Block

yetween
oftware .
Jor real Te e e e —————— e e e ——mm e —n

part of)
fication. ~ Figure 1. The Development Approach
n of the '

3.1. Functional Specification

As shown in Figure 2 each function modeled as an EFSM(Extended Finite State Machine) is

specified in the form of SDL system and process diagram, as if the system had only thé pro-

cess definitions for the function. The system diagram defines processes, external-interfaces in
structure the environment, and signals to/from processes. The process diagram mainly shows how the
system-level states are changed and what responses are made, according to external stimuli.
Usually, the function concerning multi-user can be specified by two process definitions of
which the number of process instances is (1, 1) and (0, n). No interaction between functions
are specified.

380

External
Interface
B

External

Interface

A

Function n

Function 2

Function 1

[process 1 |
Ly

EE NN A

_{ process 2 —
Gom |

Figure 2. The concept of Function specification

3.2. Software Design

Functions are transformed into blocks by maximizing the cohesion as well as by minimizing
the coupling between them, and by considering the manageable size and traceability. Derived
blocks from functions are equivalent to SDL leaf-blocks implemented by a set of EFSM work-

ing autonomously and concurrently with other EFSM[18]. We use the following approach to-

define blocks.

M

@

®3)

(4)

&)

Define candidate software blocks from function as functional as possible, considering
the physical processor boundary, minimization of interfaces, and balanced size, efc.

:

Define messages between blocks and DB relations(tuples) accessed by blocks. Mes-
sage are classified into software (CHILL) signal, CHILL buffer, CHILL timer signal,
or hardware-software interwork implemented by memory mapped I/O.

Analyze function to block transformation according to the following rules. This
analysis can be done using automated tools that will be discussed later:

- no more than 9 message channels for each block are allowed
(Research on human perception and recall shows that more than 9 elements
will overload most readers[17])

- virgin-birth(only incoming channel) block not allowed

- black-hole(only outgoing channel) block not allowed

- no common data location except CHILL buffer between blocks are allowed

- uniform block size is recommended.
- etc.

If not satisfactory, go to (1) to refine block transformation.

Draw sequence charts showing normal sequence of signals interchanged between one
or more blocks and their environment per function. Sequence charts are usually used
as a starting point for the drawing of the SDL process diagram[5].

Define subsystem by grouping blocks.

The following aspects of message surveys are made:

- system - subsystems - blocks
- system - processors - blocks
- functions - blocks

After
diagr:
used

(sdi2.

We
SDL/
eleme

4.1.

To i

mizing
Jerived
- work-
yach to-

idering

;, etc.

. Mes-
signal,

i, This

sments

Nowed

een one
1y used

381

After blocks are defined, they are designed in the form of SDL block diagram and control flow
diagram by referencing sequence charts and message surveys. This process diagram can be
used to output a CHILL program skeleton, using the SDL to CHILL transformer

(sdi2ch)[31[4].

4. SDL USAGE RULES

We have tried to set up SDL subset rules, based on the SDL’88 recommendations [15][18].
SDL/GR and common textual grammar are used. State oriented representation and pictorial

elements are not used. The followings are not (yet) employed SDL features:

- Service

- Signal Refinement

- Block Substructure

- Channel Substructure
- Import/Export

- View/Reveal .

- etc.

4.1." Additional SDL/GR Drawing Rules

To improve the understandability of SDL/GR the following rules are laid down:

- signals to/from processes of higher or equal hierarchy have to be drawn as follow-

 ings[1][5]
) To : From
______ Higher or Equal | __._.| Higher or Equal
Level Level
process process

- signals to/from Processes of lower hierarchy have to be drawn as followings[1][5]

To From

_____ Lower / L Lower
Level Level

Process Process

when there are too many signal input symbols under a state to draw on a single page,
it is recommended to follow the drawing rules as shown in Figure 3 :
a same state symbol on different pages should have page references (see Figure 3)

every process, procedure, and macro definition begins on a new page for easier refer-
ence[1]

kecp the mean flow straight[1]

place the asterisk state on the first page of the process diagram

every in/out connector from/to another page must have a page reference

place the symbols under a state in the order of signal input, save, continuous signal.

382

ey

same
state

in page
2

sn I

>SI1 [D2 | >

12)

2(2)

e o

>sll l>512 I >

|
e]

GO

same
state

I | I
Sar Sz | o Senm |

2(2)

(a) Not Recommended Style

(b) Recommended Style

Figure 3. The way of drawing many signal inputs under a state
4.2. Additional SDL Rules for Software Implementation

The following additional rules are laid down, for easy transformation from SDL to
ETRI/CHILL under TDX-10 operating system, CROS(Concurrent Realtime Operating Sys-
tem)[6](71[9][11]:

- all data (definitions) are made in CHILL[1] except predefined SDL data such as
SENDER, PARENT, OFFSPRING, SELF

- for the CHILL buffer concept[5][10], we define a SDL keyword BUF_SIGNAL and
macros sendB, receiveB to send and receive the buffer, respectively

- instead of the implicit addressing mechanism, CROS provides the facility called "Ini-
tial Signal” to send a signal to a process in a physical processor(s). For the type of
signal, we use "SEND signal_name IN physical_processor_ID". This form is also
used to represent a broadcasting signal[11][16]. ’

5. SDL TO CHILL TRANSFORMATION
Figure 4 shows how a typical block is implemented in CHILL, together with the basic
transformation examples of the create and stop process instances, signal send/receive, implicit
null transition, and dash nextstate.
Also shown in Figure 5 are the SDL to CHILL transformation examples of enabling condition,
continuous signal, save, initial signal, asterisk state, timer set, and timer reset.
Option is implemented by using conditional compilation[3].

6. SDL USAGE EXPERIENCES

At present(June 1989), 75 functionsand 98 blocks are defined for call processing, basic

administration and maintenance functions without CCS(Common Channel Signalling) and

ISDN
define
chann

Thoug
size, i

12)

2(2)

DL to
1g Sys-

such as

AL and

ed "Ini-
type of
is also

1e basic
implicit

dition,

g, basic

1g) and -

PROCESS P1;

idle

p2(sender)

-

PROCESS
FPAR BIk2 INSTANCE;

DCL pd INT;

383

BLOCK BIk1

/* Block: Blk1 */
SPEC MODULE REMOTE cros;

main: MODULE
SEIZE s1, s2, 53, s4;

pl: PROCESS();
DCL sender INSTANCE;
DCL nextstate SET(idle);
nextstate := idle;
DOFOR EVER;
state_loop: CASE nextstate OF
(idle): RECEIVE CASE NONPERSISTENT
SET sender; . .
(s1): START p2(sender);
ESAC;
ESAC;
OD;
END p1;

p2: PROCESS(B1k2 INSTANCE);
DCL self INSTANCE;
DCL pd INT;
DCL nextstate SET(state1);
self := THIS;
SEND s2(self) TO Bik2;
nextstate ;= statel;
DO FOR EVER;
state_loop: CASE nextstate OF
(statel): RECEIVE CASE NONPERSISTENT
(s3 IN pd):

SEND s4(pd) TO BIK2;
STOP;
ESAC;

ESAC state_loop;
OD;
END p2;
start p1();
END main;

Figure 4. Block Implementation

ISDN(Integrated Service Digital Network) functions. Average 4 to 5 Process definitions are
defined per block (leaf-block). The number of Signal definitions are about 3,000. The average

channel number for each block is about 4.9.

Though the SDL descriptions are not formal enough yet, the amount of SDL document, in A4
size, is about 500 pages for functions and about 2500 pages for blocks,

384

PROCESS p3 FPAR BS INSTANCE;

DCL pd INT;
DCL sss SET(

2 D)s

s2(sel
i e
= A

N
>s3(pd) / s Csss -:~— B

N

- SET(Now+
(=4 > 10'se(c, Tout)
IN
SS(Pd)>’_‘[PROCESSOR1 state3

(wa) S| S

s4 IRESET(Tout
statel

Ll

(state2,

state5

s9 to
sender

SPEC MODULE REMOTE cros;

main: MODULE
SEIZE s2, s3, s4, 5, 8, 9, res, Tout;

p3: PROCESS(B5 INSTANCE);
DCL sender, self INSTANCE;
DCL sss SET(A, B);
DCL Tid, pd INT;
DCL nextstate
SET(statel, state2, state3, state5);
self := THIS;
SEND s2(self) TO BS;
$88 1= A;
nextstate ;= statel;
DO FOR EVER;
state_loop: CASE nextstate OF
(state1): RECEIVE CASE NONPERSISTENT
EXCEPT s4 SET sender;
(s3 IN pd):
IF sss = A THEN
SEND s8(pd) IN PROCESSOR1;
nextstate ;= state2;
ELSE
SEND s3(pd) TO self;
FI;
(s5): SEND s9 TO sender;
STOP;
ELSE
IF sss = B THEN
Tid :=
set_timesig(10, SEC, Tout);
nextstate ;= state3;
FI,
ESAC;
ESAC; .
(state2): RECEIVE CASE NONPERSISTENT
(s4): ...
ESAC; . .
(state3): RECEIVE CASE NONPERSISTENT
(res): cancel(Tid);
nextstate := stateS;
(Tout): ... :
nextstate ;= statel;
(s5): ...
ESAC;

ESXC state_loop;
oD,
END p3;

END main;

Figure 5. Sample SDL to CHILL transformation

Sinct
from
the &

Note
bloci
the «
gene
Desc
desc
their
tions
whic
vide
cons
char

hard
a g
betv
cons

ple,
wha
inte:

We
abst
plet
thin
exp

cip
fes

385

Since no serious problems have been arisen on conveying design ideas represented in SDL
from design organization, that is ETRI, to the implementation organizations, we are sure that
the SDL descriptions are very useful as a standardized communication mechanism.

Note that SDL system diagram and block substructure diagram has not been described, since
blocks(leaf-blocks) are transformed directly from functions as mentioned before. To support
the diversified transformation, we use a ERA(Entity Relational Attribute) based Meta tool for
generating methodology-environments called GMAD/MAD (automatic Generator for System
Description and Analysis Manager / system Description and Analysis Manager)[14]. We
describe the instances of finction, block, subsystem, message, process, processor, relation, and
their relationships in MAD/DL (Description Language). After transforming MAD/DL descrip-
tions into MAD database, MAD generates various documents, for example, a message survey
which is equivalent to that of the SDL system and block substructure diagram. MAD also pro-
vides interfaces to verify some of the transformation rules mentioned in 4.2. It is now being
considered that the generation of SDL/PR describing system and block substructure, sequence
chart, and signal definitions in CHILL from MAD.

A graphic editor(sge), syntax checker(checksdl), SDL to CHILL transformer(sdi2ch), and
hard-copy generator(psdl) is also proved to be very useful[6]{7]. Especially, sdl2ch has played
a great role to improve software productivity. But we are facing inconsistency problems
between code and SDL descriptions as time passes by. For the better maintenance, we are
constructing a SDL-CHILL consistency checking environment using GMAD/MAD.

We also found that SDL can be used to represent the development process itself. For exam-
ple, a configuration management process is described in SDL to guide clearly how to do and
what to do for the developer and manager. These descriptions also will be used to generate
interfaces such as menu panels of methodological tools.

7. CONCLUSIONS

We haveexperienced that SDL, especially SDL/GR, is a useful language for the “people” to
abstract, project, decompose large and complex problems rigorously, unambiguously, com-
pletely, and consistently. But we also recognized that knowing SDL language syntax is one
thing, and using it effectively is another. The followings are what we would like to say about
exploiting SDL from a practical and pragmatic user perspective:

- informal SDL description is OK to start with[4], but it should become a formal one to
achieve unambiguity and machine-processability etc.

- education and experience is required to utilize the full power of the language. Espe-
cially, the writing experience is really necessary. So, a workshop style education pays

- tailoring is mecessary to their organization and methodologies. Adaptation is inevit-
able especially in the physical design phase, considering the target system implemen-
tation language, operation system, and environments

- tool environments must be integrated to ensure the consistency, for instance, between
SDL descriptions and source code[5]. It is also important to lay down practical
guidelines to use the SDL tool environments.

- since specification language is closely related to human being, Hangul(Korean
Language) SDL environment is necessary in our country. e

The increased intellectual leverage justifies the effort(i.e., the cost). As Dijkstra says in A Dis-
cipline of Programming (Prentice-Hall, 1976), "The power of a formal notation should mani-
fest itself in achievements we could never do without it !"[19].

386

REFERENCES

[1] Victor M. M. Reijs, "The use of SDL in an ISDN-terminal project,” SDL 87 : State of
the Art and Future Trends, ed. R.Saracco and P. A. J. Tilanus, North-Holland, 1987, PD.
3-9.

[2] R Tinker, R.A. Orr and M.T. Noris, "Supporting the SDL user," SDL ’87 : State of the
Art and Future Trends, ed. R.Saracco and P. A. J. Tilanus, North-Holland, 1987, pp. 57-
64.

(3] J. H. A. FRANCO, J. HAIM, and H. M. LIMA, "Going from SDL to CHILL: The TRO-
PICO approach," SDL *87 : State of the Art and Future Trends, ed. R.Saracco and P. A,
J. Tilanus, North-Holland, 1987, pp. 329-338.

[4] Paolo BAGNOLI and Laura DRAGONI, "SDL USAGE WITHIN THE ITALIAN
ADMINISTRATION," SDL ’87 : State of the Art and Future Trends, ed. R.Saracco and
P. A. J. Tilanus, North-Holland, 1987, pp. 11-19.

[5] Mike Regan, John Colton, and Rick Reed, "Experience Using CCITT SDL," SDL ’87 :
State of the Art and Future Trends, ed. R.Saracco and P. A. J. Tilanus, North-Holland,
1987, pp. 21-31.

(6] J. P. Hong, W. Choi, Y. J. Shin, and H. C. Kim, "Integrated Software Development
Environment based on CCITT/SDL for Telecommunication Systems," Proceedings of
Second IEE[BCS Conference - Software Engineering *88, Liverpool, July 1988, pp. 196-
200.

[71 J. P. Hong, J. S. Lee, W. Choi, and Y. S. Shin, "SDL-Oriented Graphical Environment”,
SDL *87 : State of the Art and Future Trends, ed. R.Saracco and P. A. T. Tilanus, North-
Holland, 1987, pp. 117-126.

[8] Bruno S. Vienna, "Software Development Methodology and Environment in the TRO-
PICO System," Proceedings of International Switching Symposium(1S5’87), Phoenix,
USA, Nov. 1987, B8.3.6. :

[9] D. G. Lee and J. P. Hong, "CHILL Compiling System and its Environment," Proceedings
of IEEE Region 10 Conference and Exhibition, Seoul, August 1987.

[10] Y. K. Lee, H. K. Kim, and H. H. Lee, "SYSTEM CONCEPTS AND IMPLEMENTA-
TION OF TDX-10 DIGITAL SWITCHING SYSTEM," Proceedings of Chinese-Korean
Telecommunication Technology Symposium, Taipei, Taiwan ROC, April 1989, pp. 24-31.

[11] Seok Youl Kang, "Realization of a Realtime Operating Systems for TDX-10," Proceed-
ings of Chinese-Korean Telecommunication Technology Symposium, Taipei, Taiwan ROC,
April 1989, pp. 13-18.

[12] Y.S. Chun, "A Life-Cycle Support System for Real Time Systems," Ph. D. Dissertation,
Seoul National Univ., 1986

[13] CSELT, "COURSE ON SDL," 1987, Chapter 2, pp. 15.

f14] Y. K. Song, S. M. Han, H, Park, W. H. Chae, and J. P. Hong, "Automatic Generation of
System Description and Analysis Tools for managing Software Development Process,"
ETRI Technical Memo(in Korean), Jan. 1989

[15] CCITT, Draft Recommendation Z.100-Z.104, SDL Newsletter, 1986.
[16] ETRI, "CHILL Reference Manual," (in Korean), Aug. 1988.

[17] Yourdon, "Structured Analysis and Design for Real-Time Systems," Yourdon, inc. Edition
3.0, January 1984
[18] Ference BELINA, Dieter HOGREFE, "The CCITT-Specification and Description

Language SDL," Computer Networks and ISDN Systems 16 North-Holland, 1988/1989,
pp. 311-341,

[19] Paul C. Grabow, "A perspective on Specification Language," Proceedings of ICCL 88
Maiami USA, 1988, pp. 164-18.

SDL ¢
O.F=
© Else

In
sev
Pro

In

una
SDL
gra
flc
sui

In
reu
tec
ori
(da

Thi

apr
sof

The
prc
be

orc¢

Suc
of

Net
Ite

The
of
img

Acc
co.
des
ope
pOs
ele
ot}

