I. Scope

A. System Objectives

The game engine should run at at least 30 fps on Win 9x or higher. It should run smoothly and should detect errors and shut down gracefully instead of crashing.

B. Major Software Requirements

· The characters and guards should be able to move in any type of medium: liquid, solid, gaseous with appropriate animations.

· The character should be able to be blocked by objects until they are broken or unlocked.

· The character should be able to search container objects.

· The character should be able to throw objects while standing still, jumping, or crouching.

· Character motion should be easy to control

· Guard and object AI should only be performed when they are within 1.5 * Area of the screen.

· Switch objects should be implemented (objects that require one or more object to be switched on, either in sequence or non-sequenced)

· Object animation should be flexible allowing new types of objects to be easily added.

· Cut-scenes must be implemented

· A menu system should be implemented, allowing the user to view high scores, start a new game, save a game, load a saved game, resume playing, quit and none of these options, when selected, should cause the game to crash at any time.

· Secret locations should be implemented

· Restrict looking up and looking down.

C. Dropped Requirements

· This includes flying (with a special object or as an innate ability if it's a guard) and swimming.

· Guards must be able to track the main character.

· Guards must have self-preservation.

· Object triggered events
D. Design Constraints, Limitations

A great deal of the design constraints and limitations will depend on time. If everything goes well, all of the requirements can be met. In real life, however, things go wrong and priorities may need to be re-adjusted. Features may also be affected by feedback from beta testers and my boss.

II. Data Design

A. Data Objects and resultant Data Structures

1. Character Class

2. Guard Class

3. GameObject Class

4. GameWorld Class

5. Handler Class

6. BoundingBox Struct

B. File and Database structures

Initial information is read in from text files from various constructors.

1. Episode input

· Maximum number of objects for the episode

· High Score

2. Level input

· Episode Number
· Level Number
· Number of characters
· Number of guards
· Number of objects
· Number of lives
· Character position info
· Guard position info
· Object position + default state info
3. Character input

· Name

· Mass

· Burden

· Fighting Skill

· Defense Skill

· Number of Subjects the character can talk about

· Dialog info

· Number of Weapons

· Weapon Hotspot

· Number of Animations

· Animation info: animation name, dimensions, vulnerability, flying/non-flying flag, looping flag

· Number of Objects

4. Guard input

· Character input
· Automated flag
· Stationary flag (non-patrolling)
· Names of objects in inventory
5. Object input

· Name
· Animated flag
· Holdable flag
· Circular flag
· Climbable flag
· Moveable flag
· Weapon flag
· Mass
· Breakable value
· Blocked flag
· Locked flag
· Searchable flag
· Throwable flag
· Destroyed on impact flag
· Bounce Height and Bounce factor
· Event delay
· Value to increase character health
· Increases character’s lives flag
· Power up flag
· Number of Animations
· Animation info: animation name, dimensions, hit points, value added to character’s score
III. Architectural Design

A. Review of Data and Control Flow

At the beginning of each level, the information about the environment, the objects and enemies within the environment, and the graphics are loaded. The data initializes the objects and calculations are performed to get other values. During game play, the character’s hot spot (a single pixel point that is the midpoint of the bottom edge of his bounding box) is checked to see what kind of medium he is standing on. This information, along with his last action, determines his current action and velocity. His current action and velocity may also be modified by interaction with objects and guards.

B. Derived Program Structure

1. Game Initialization

· Load Graphics
· Load Sound
· Initialize controls
· Create the world
· Create the main character
· Create the guards
· Create the objects
· Create an instance of the handler class
2. Game Loop

· Take in user input
· Process user input
· Increment Animation
· Update windows
· Go to Menu if the user hits Escape key
· If end of level is detected, go to end of level screen and check for new level. If new level is found, load the new level. Otherwise, go to the high score list and display the end of game label.
3. Game Menu

· Load Game
· Save Game
· View High Scores
· Resume Game
· Quit
4. Game Un-initialization

· De-allocate memory
· Set pointers to Null
IV. Interface Design

A. Human-Machine Interface Specification

· When the titlescreen is visible, either clicking on the left mouse button or hitting any key will take the user to the game menu.
· The game menu responds to left mouse clicks on the buttons.
· While in the game playing state, keyboard input moves the character or will take the user to the game menu
B. Human-Machine Interface Design Rules

· All text must be easy to read, both in size and simplicity of the font.
· The design of the menus should be balanced, so that the eye is not drawn away from the buttons or information being displalyed.
· The colors used should be interesting without being glaring.
V. Procedural Design

A. Objects Blocking Characters

An object color will be added to the hit detection canvas. When the character class detects this color, it will need to find the object at those coordinates and determine if the object is blocked, broken, unlocked, climbable, etc. before letting the main character proceed with his intended action, modifying the action if necessary.

B. Searching Containers

If an object is searchable, when the main character is intersecting the object and pressing the Up key, a status bar should appear above the object showing the search progress. If the character is not interrupted by either a guard or an event, and there is an object to be found in the container, some kind of “found” animation and sound should be played and the object should be added to the character’s inventory. As there is already a status bar class implemented in the graphics library, the status bar will pose no problem, but code will have to be added to allow event-based animations.

C. Projectiles

All projectiles will be given a constant x velocity and a constant y velocity and shall move in the direction of their velocity until it hits something: a character, a guard, a solid surface or a blocked object. If it hits an object or a solid surface it will get stuck and remain in the object or surface until it is intersected by the main character. If it hits a character or a guard, the object will disappear after applying damage, turning into a object that will be useful to the character. If projectiles have a bounce factor, they can bounce off solid surfaces instead of sticking. If projectiles are flagged as being destroyed upon impact, they will be destroyed at the end of their destruction animation.

D. Animate Only Onscreen Guards and Objects

Before performing AI, the game engine needs to check to see if guards and objects are onscreen by comparing their coordinates to the screen coordinates.

E. Object Animation

The object animation code must be evaluated to determine if it is flexible enough to easily allow new objects to be added, even if the new objects have more actions than existing objects allow for in the current animation code.

F. Cut-scenes

Worst case scenario, the cut-scenes could be made into executables that are called by the event handler at the appropriate time. Otherwise, the cut-scenes should be directly incorporated into the engine code. Currently, the code exists in the graphics library but is un-tested for running in full-screen mode. Still scenes could also take the place of cutscenes.

G. Game Menu

This should be as simple as creating a window with buttons on it. Code for windows and buttons (and other controls) already exist in the graphics library. Most of the work will be in the design of the layout, but code will need to be added so that the mouse arrow shows for this window and a callback function may need to be written.

H. Secret Locations

Secret locations will be areas of the map that are hidden and blocked until the user intersects a specific pixel that is the secret location color. A sound may need to be associated with finding the pixel.

I. Looking

The user can currently look up and down using the page up and page down keys but they don’t always respond to being pressed and the user is unlimited as to how far he can look up or down. The user should be limited as to how high he/she can look down. If the artist has time to draw a looking animation, this can be easily implemented.

J. Optimize Framerate

At this point, the graphics are the major instigators of the slowdown. To reduce the slowdown, the tiles must be broken into smaller sizes and marked as solid or transparent so that only the topmost layer is being drawn, and not tiles that are actually covered up. The code for calculating the blockage already exist in the graphics library but a function to pre-process the tiles must be written, as well as one to reset the covered flags of only the tiles that are onscreen.

There are also a few non-programming methods to reduce the slowdown. The quickest and easiest approach would be to limit the number of graphic layers to a total of three layers. A more complicated and more involved approach is re-designing the level (and thus re-drawing the art) in such a way as to take maximum advantage of the optimization code. This last method may have to be implemented whether or not the optimization code is sufficient to increase the framerate.

VI. Test Cases

The artwork/level design for the first episode is not yet complete, but as soon as I have the maps from my partner, I can create the test case maps.

