Project Requirements for LightWeight Ninja
I. Introduction

The story of LightWeight Ninja is about a young boy, Ty, who was chemically altered from a very young age and trained to become the world’s most effective assassin/thief. The man behind this scheme is Mr. Elliot Xavier, a.k.a. Mr. eX. Mr. eX sends Ty to assassinate his rival, Sentetsu, as a final test of his training. Ty makes it into Sentetsu’s complex, finds, fights and is defeated by Sentetsu, who talks Ty into joining forces with him. As the story shapes the requirements of the game engine, the design of the game engine will have to take the story into account.

A. System Reference

The game engine is being programmed on Windows 2000 using Microsoft Visual C++ 5.0 and DirectX. The game should be able to run smoothly on Windows 9x, ME or NT as long as DirectX is installed on the user’s machine.

B. Overall Description

The game engine takes information from text, bitmap and encoded bitmap files and uses this information to create an animated, interactive game world. Interaction is based on the user input and stored information on the characters, objects and world. Extending the game engine requires the extension of existing classes and most likely the addition of new classes.

C. Software Project Constraints

The game must be run full screen. Using IRC and WindowBlinds can cause flickering to occur; the quickest way to get rid of this problem is to exclude IRC from WindowBlinds, but other options are also being explored.

II. Information Description

There are three kinds of information that must be processed by the game engine: initialization input, user input, and world information. The initialization input is information that is loaded from files at the beginning of each level to set the initial information about the world, objects and characters. Currently, the only type of user input that is supported is through the keyboard. The world information is set during the initialization stage and modified as the user interacts with the world. Based on user input, the game engine must find out what part of the world the main character is in, find out what the character is interacting with, decide what his current action is, and play the correct animations and sounds.

A. Information Content Representation

The game engine currently uses 5 main classes to store and process information: Character, Guard (derived from Character), GameObject, GameWorld and Handler. Character stores and controls the information for the main character, Ty, and could also be used for characters who are not trying to hurt Ty. The Guard class stores and controls information about Ty’s enemies. The GameObject class stores and controls all the information about all of the objects in the world that the user can interact with. The GameWorld class contains all of the information about Ty’s world. It has the array of objects that have not been picked up or destroyed by Ty. It contains the pointers to the tilemaps that create the scenery. It contains the pointer to the hit detection canvas. The handler class handles the character’s interaction with the world, objects and guards and will eventually handle events. A few other classes are used to store information about windows.

1. Character Class

This class stores information common to all characters, whether they are guards, Ty or other characters. It holds the animation model, position, current action, current velocity, etc.

Necessary additions to this class include: the ability to fly when the correct object is in his inventory, the ability to swim (and related water activities), the ability to throw weapon objects, and (as a lower priority) the ability to use a quarterstaff. This last addition is partially implemented but is not working out well, so it is being placed on the back burner. Other animations will need to be added.

2. Guard Class

This class holds information specific to guards, the characters who try to stop Ty, and also has limited AI to control their actions.

Necessary additions beyond the additions to the character class include the ability to fly if the guard is a flying guard (birds, flying robots, etc.), smarter AI for non-automated guards, hurt animations and a sound effect for when the guards get hurt. The AI for the guards needs to be modified so that it only performs when they are on the screen.

3. GameObject

This class holds information about the objects that Ty can interact with. Depending on the information in its input file, the object can be picked up, used as a weapon, broken, increase Ty’s health, increase the number of lives that Ty has, or gives Ty some special power.

Necessary additions to this class include motion (if the object is a projectile), the ability to block a character from going through it, and allowing the character to stand on it. Objects also need to be able to trigger events. The animation code may also need to be improved if objects with different behavior than the existing objects are introduced.

4. GameWorld

This class holds an array of objects that are loose in the world, as well as pointers to the tilemaps which create the scenery, the hit detection canvas that indicates what Ty is standing on, and the episode and level information.

5. Handler

This class handles interaction between the user and the world, objects and guards and makes adjustments to the world, objects, guards and characters accordingly.

This class needs to be able to handle events. For example, if Ty hits a switch, a door should open.

B. Information Flow representation

1. Data Flow

All of the initial information is loaded in from text files and stored in the Character, Guard and GameWorld classes. The GameObjects are stored in an array in the GameWorld class, and can also be loaded into the Guards’ and Ty’s inventories if desired. This information, along with the user input, which is processed through the character class, is sent to the handler class which determines if Ty is intersecting guards, objects, or special kinds of surfaces, and modifies Ty’s current action if necessary.

2. Control Flow

The user input is passed to the instance of the character class that controls Ty. Depending on which keys have been pressed and what Ty is standing on, and sometimes what his last action was, the new action is determined. Then the Handler class determines what Ty is intersecting and changes the animations of Ty, the guards, or the objects if necessary.

III. Functional Description

Some of the features currently considered to be necessary are listed below, but some of them may not be visibly demonstrable by the end of the semester depending on how much of the graphics the artist can get done.

A. Loading/Unloading Graphics

The game engine must be able to load only the necessary graphics and unload them when it is no longer using them. As the game engine has only been tested with one level’s worth of graphics, it is not clear whether this feature is already implemented in the graphics library.

B. Loading/Saving Games

The game engine must be able to save games and load saved games.

Saved games should retain the current positions of all objects, guards and characters in the world, the current score, health, number of lives, whatever powerups the player has, what the character has in his inventory, the current level and episode, and so on.

C. Loading/Switching Between Levels/Episodes

The game engine must be able to load any level from any episode, and switch between them sequentially. This is partially implemented.

D. End of Level/End of Episode

The game engine must display a end of level/end of episode screen listing the player’s score, ranking, the high score, and be able to transition from this screen to the next level or allow the user to save and quit.

E. Cut-scenes

The game engine must be able to play cut-scenes before and after each level. This feature will not be added until after the full release of the game, due to copyright restrictions on the software used to make the cutscenes.

F. Exception Handling

The game engine must be able to catch errors/exceptions before they cause the game to crash and prevent the errors.

IV. Behavioral Description

The first screen that the user will see will be the title screen. Upon hitting Enter, the Menu screen should appear, allowing the user to choose between starting a new game and loading a saved game. Once the user has made his/her selection, the appropriate level will be loaded and the game window will appear. The player will use the keyboard to navigate through and interact with the world. Escape automatically exits from the game without saving. The player score will only be saved if the player finishes a level or saves the game.

V. Validation and Criteria

A. Performance Bounds

The game engine must be able to run the game at no less than 30 frames/second (fps) on a Pentium II 400 MHz machine with 64 MB RAM. Ideally, the game would be able to run at 30 fps on a Pentium 200 MHz with 64 MB RAM, but with the size of the graphics files, that might not be possible.

B. Classes of Tests

1. The game should load without crashing.

2. No graphical errors should be evident (mirror effect, invisible barriers, graphics in the wrong position, etc.)

3. Assuming that the user does not run out of lives and that he does actually make it to the end of the level, he should be able to exit the level and go to the next one after the end of level screen appears. If there are no files for the next level, an appropriate message should be displayed.

4. The user should be able to perform all of the implemented animations, and all of the animations should run smoothly without flickering or other bugs.

5. The user (and guards) should be able to throw weapon objects.

6. The user should be able to save a game.

7. The user should be able to load a saved game.

8. The high score should change when the user gets a score higher than the high score.

