
Human sub-cognitive skills can be captured and reproduced in a 
computer program. As the human subject performs the skills, his 
or her actions are recorded. This record is used as input to a 
learning program, which outputs a set of rules that reproduce the 
skilled behavior. This method is called behavioral cloning [4]. In 
this project, we apply this method to teach a car to steer itself by 
training a deep neural network to predict the steering angles when 
the car is facing various turns. We train and test the neural 
network on a virtual car in a simulator instead of a real car, which 
is usually unavailable or expensive to access in the classroom. 
The simulator we use is open source Udacity simulator; its two 
modes allow us to collect training data and test the neural network 
model with ease. The training data comprise images of road from 
three cameras mounted on the simulated car, along with 
corresponding steering angels. The data is used to train and 
validate a Deep Neural Network’s model in Keras with TensorFlow
as backend so that it can recognize road configurations and 
generate appropriate angles. A block diagram of the training 
process in shown in figure 1. Images are fed into a CNN which 
computes a proposed steering angle. The steering angle is then 
compared to the desired steering angle for that image and the 
weights of the CNN are adjusted using back propagation to bring 
the CNN output closer to the desired output. Once trained, the 
network can generate steering angles for the simulated car to 
drive itself in the simulator. Currently the network with best 
performance is derived from the NVIDIA architecture with 4 
convolution layers, which have 3x3 filter sizes and depths varying 
from 24 to 64, and 4 fully connected layers. As the project goes 
further, it will include the use of recurrent neural network (RNN) 
and/or other deep learning techniques to improve the model. 

Data Acquisition and Augmentation 
Behavioral Cloning in this project is to train neural networks with 
data that exhibits the very driving behavior we want to clone. 
Training and testing is conducted on the pre-built open source 
Udacity Simulator, which has two modes: Training Mode and 
Autonomous Mode. Training Mode is used to record frames from 
three cameras mounted on the simulated car’s left, center, and 
right as well as driving statistics such as steering angle, throttle, 
brake and speed, recorded in a .csv file, as shown in figure 2, 
while autonomous Mode is used to test the model trained using 
this data. Udacity simulator also provides two tracks to train or 
test:  Lake Track and Mountain track. We collected data only from 
Lake Track [5]. 

Image data and its corresponding steering angles are used 
as model input and expected to predict the steering angle in the 
range of [-1, 1] in real time driving. Image data from all three 
cameras are used as training data, because we want to handle 
the issue of recovering from being off-road driving and also to 
balance the dataset with non-zero steering angels. This is 
achieved by adjusting steering angle by applying correction value 
+0.27 for left image and -0.27 for right image. Figure 3 shows 
some examples of images and their corresponding steering 
angles [2].  

To capture good driving behavior, we use center lane 
driving. As a result, the dataset is dominated by small steering 
angles, as shown in figure 4. After masking out small angled 
samples, the steering angles distribution is shown in figure 5. 

We ended up with 8,036 samples after more than half an 
hour of driving around the track 1 in simulator, which is mostly not 
enough for the model to generalize well, so a couple of data 
augmentation techniques are applied to extend the dataset during 
training. These includes randomly flipping image to simulate the 
opposite direction, shifting image vertically and horizontally to 
simulate the effect of the car at different positions of a lane, 
altering image brightness to simulate day and night conditions, 
cropping image to remove the sky at the top and car front at the 
bottom. Figure 6 shows the effect of some augmentation [2]. 
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The car managers to follow the road on the first Lake track for 
most of the time, which proves that CNN is able to learn 
meaningful road features from very sparse training signal, 
steering angle alone as shown on a YouTube video at: 
https://youtu.be/8PgDVEBlR9g. However, sometimes the car will 
go off the center of the road after a few laps on Lake Track and 
will ran into cliff in Mountain track. We think collecting more data 
from Mountain track and adding recovery scenarios to handle 
tricky curves and slopes will help reduce the error of the model. 
Also we plan to try out VGG16 and comma.ai model or to use of 
recurrent neural network to improve the model.
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Augmentation pipeline is applied using Keras batch-by-batch 
fit_generator in training process to generate data. There are two 
generators for this project. Training generator is to generate 
samples per batch; at each batch, random samples are picked, 
applied augmentation and preprocessing, so training samples 
feeding into model are always different. Validation generator is 
also to generate samples per batch for validation, but unlike 
training generator, only central images are used and data 
augmentation is not applied.  

Model Architecture 
The model is developed using Keras with TensorFlow as 
backend, and trained in open source Conda environment built in 
a MacPro 15” with NVIDIA GeForce GT 750M GPU 2GB. 

We’ve started with a well-known and often-used model in 
autonomous vehicle community from NVIDIA. We’ve kept 
adjusting and optimizing the NVIDIA model. Variants of the model 
have been tried: a simpler model with 3 convolutional layers with 
depth from 16 to 64 and 3 fully connected layers with 2 dropout 
out of 3 dense layer. This model achieved the lowest validation 
loss of all models tried; however, this model has difficulty in 
making sharp turns: the car ran into the lake at the first sharp 
turn. A slightly more complicated model with 5 convolutional layer 
and 5 fully connected layers with L2 weight regularization applied 
in every convolution and dense layer and 50% dropout for the 
first dense layers. This model also cannot finish the first lap and 
would run into the lake at sharp turns. After many trial and error 
with variants, the model so far turns out to work best is shown in 
figure 8. 

The network consists of 9 layers, including a normalization layer, 
5 convolutional layers and 3 fully connected layers. The 
convolutional layers are meant to handle feature engineering: 
strided convolutions are used in the first 3 convolutional layer with 
2 x 2 stride and 5 x 5 filter size and non-strided convolutions with 
3 x 3 filter size are used in the last two convolutional layers with 
depth varying from 24 to 64. To avoid overfitting, Relu activation 
is applied after each convolution layer. Followed by convolutional 
layers are fully connected layers for predicting the steering angle 
[3]. The model is trained using Adam optimizer with a learning 
rate = 1e-4 and mean squared error as loss function. 20% of the 
training data is split out for validation, and validation loss is as low 
as 0.0098 after 40 epochs, as shown in figure 9. Contrary to 
common sense that training loss is always lower than validation 
loss, our model’s validation loss is much lower than training loss. 
We assume that excessive data augmentation applied in training 
set makes validation set somehow simpler for the model. Also, 
we found that low validation loss is not always a great indication 
of how well car performs on the track. So we tried to save every 
model at each epoch and see which one drives best on the 
simulator track.    

Model Testing is conducted in the simulator and only the 
center camera image input is fed to the neural network. The 
network outputs steering angle value, which is fed to the virtual 
car. The Udacity simulator servers as the server and the neural 
network or python program serves as client. The simulator 
outputs the images, the python program analyses it and
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outputs the steering 
angle. 
The simulator 
receives this 
steering angle value 
and turns the car 
accordingly. The 
whole process goes 
on cyclically [1]. 
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