
Human sub-cognitive skills can be captured and reproduced in a
computer program. As the human subject performs the skills, his
or her actions are recorded. This record is used as input to a
learning program, which outputs a set of rules that reproduce the
skilled behavior. This method is called behavioral cloning [4]. In
this project, we apply this method to teach a car to steer itself by
training a deep neural network to predict the steering angles when
the car is facing various turns. We train and test the neural
network on a virtual car in a simulator instead of a real car, which
is usually unavailable or expensive to access in the classroom.
The simulator we use is open source Udacity simulator; its two
modes allow us to collect training data and test the neural network
model with ease. The training data comprise images of road from
three cameras mounted on the simulated car, along with
corresponding steering angels. The data is used to train and
validate a Deep Neural Network’s model in Keras with TensorFlow
as backend so that it can recognize road configurations and
generate appropriate angles. A block diagram of the training
process in shown in figure 1. Images are fed into a CNN which
computes a proposed steering angle. The steering angle is then
compared to the desired steering angle for that image and the
weights of the CNN are adjusted using back propagation to bring
the CNN output closer to the desired output. Once trained, the
network can generate steering angles for the simulated car to
drive itself in the simulator. Currently the network with best
performance is derived from the NVIDIA architecture with 4
convolution layers, which have 3x3 filter sizes and depths varying
from 24 to 64, and 4 fully connected layers. As the project goes
further, it will include the use of recurrent neural network (RNN)
and/or other deep learning techniques to improve the model.

Data Acquisition and Augmentation
Behavioral Cloning in this project is to train neural networks with
data that exhibits the very driving behavior we want to clone.
Training and testing is conducted on the pre-built open source
Udacity Simulator, which has two modes: Training Mode and
Autonomous Mode. Training Mode is used to record frames from
three cameras mounted on the simulated car’s left, center, and
right as well as driving statistics such as steering angle, throttle,
brake and speed, recorded in a .csv file, as shown in figure 2,
while autonomous Mode is used to test the model trained using
this data. Udacity simulator also provides two tracks to train or
test: Lake Track and Mountain track. We collected data only from
Lake Track [5].

Image data and its corresponding steering angles are used
as model input and expected to predict the steering angle in the
range of [-1, 1] in real time driving. Image data from all three
cameras are used as training data, because we want to handle
the issue of recovering from being off-road driving and also to
balance the dataset with non-zero steering angels. This is
achieved by adjusting steering angle by applying correction value
+0.27 for left image and -0.27 for right image. Figure 3 shows
some examples of images and their corresponding steering
angles [2].

To capture good driving behavior, we use center lane
driving. As a result, the dataset is dominated by small steering
angles, as shown in figure 4. After masking out small angled
samples, the steering angles distribution is shown in figure 5.

We ended up with 8,036 samples after more than half an
hour of driving around the track 1 in simulator, which is mostly not
enough for the model to generalize well, so a couple of data
augmentation techniques are applied to extend the dataset during
training. These includes randomly flipping image to simulate the
opposite direction, shifting image vertically and horizontally to
simulate the effect of the car at different positions of a lane,
altering image brightness to simulate day and night conditions,
cropping image to remove the sky at the top and car front at the
bottom. Figure 6 shows the effect of some augmentation [2].

METHODSINTRODUCTION

RESULT & SUMMARY

Teaching Cars to Reproduce Human Driving Behavior
Using Deep Neural Networks in a Simulated Environment

Zhen Liu and CJ Chung
College of Arts & Sciences, Lawrence Technological University

The car managers to follow the road on the first Lake track for
most of the time, which proves that CNN is able to learn
meaningful road features from very sparse training signal,
steering angle alone as shown on a YouTube video at:
https://youtu.be/8PgDVEBlR9g. However, sometimes the car will
go off the center of the road after a few laps on Lake Track and
will ran into cliff in Mountain track. We think collecting more data
from Mountain track and adding recovery scenarios to handle
tricky curves and slopes will help reduce the error of the model.
Also we plan to try out VGG16 and comma.ai model or to use of
recurrent neural network to improve the model.

Reference
[1] Akarsh Zingade.(2018) Autonomous Driving using Deep Learning and Behavioural
Cloing
[2] Alex Staravoitau. End-to-end Learning for Self-driving Cars
[3] Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.
D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J. & Zieba, K. (2016). End to End
Learning for Self-Driving Cars.. CoRR, abs/1604.07316.
[4] Sammut C. (2011) Behavioral Cloning. In: Sammut C., Webb G.I. (eds) Encyclopedia
of Machine Learning. Springer, Boston, MA
[5] Udacity Self-Driving Car Simulator: https://github.com/udacity/self-driving-car-sim

Augmentation pipeline is applied using Keras batch-by-batch
fit_generator in training process to generate data. There are two
generators for this project. Training generator is to generate
samples per batch; at each batch, random samples are picked,
applied augmentation and preprocessing, so training samples
feeding into model are always different. Validation generator is
also to generate samples per batch for validation, but unlike
training generator, only central images are used and data
augmentation is not applied.

Model Architecture
The model is developed using Keras with TensorFlow as
backend, and trained in open source Conda environment built in
a MacPro 15” with NVIDIA GeForce GT 750M GPU 2GB.

We’ve started with a well-known and often-used model in
autonomous vehicle community from NVIDIA. We’ve kept
adjusting and optimizing the NVIDIA model. Variants of the model
have been tried: a simpler model with 3 convolutional layers with
depth from 16 to 64 and 3 fully connected layers with 2 dropout
out of 3 dense layer. This model achieved the lowest validation
loss of all models tried; however, this model has difficulty in
making sharp turns: the car ran into the lake at the first sharp
turn. A slightly more complicated model with 5 convolutional layer
and 5 fully connected layers with L2 weight regularization applied
in every convolution and dense layer and 50% dropout for the
first dense layers. This model also cannot finish the first lap and
would run into the lake at sharp turns. After many trial and error
with variants, the model so far turns out to work best is shown in
figure 8.

The network consists of 9 layers, including a normalization layer,
5 convolutional layers and 3 fully connected layers. The
convolutional layers are meant to handle feature engineering:
strided convolutions are used in the first 3 convolutional layer with
2 x 2 stride and 5 x 5 filter size and non-strided convolutions with
3 x 3 filter size are used in the last two convolutional layers with
depth varying from 24 to 64. To avoid overfitting, Relu activation
is applied after each convolution layer. Followed by convolutional
layers are fully connected layers for predicting the steering angle
[3]. The model is trained using Adam optimizer with a learning
rate = 1e-4 and mean squared error as loss function. 20% of the
training data is split out for validation, and validation loss is as low
as 0.0098 after 40 epochs, as shown in figure 9. Contrary to
common sense that training loss is always lower than validation
loss, our model’s validation loss is much lower than training loss.
We assume that excessive data augmentation applied in training
set makes validation set somehow simpler for the model. Also,
we found that low validation loss is not always a great indication
of how well car performs on the track. So we tried to save every
model at each epoch and see which one drives best on the
simulator track.

Model Testing is conducted in the simulator and only the
center camera image input is fed to the neural network. The
network outputs steering angle value, which is fed to the virtual
car. The Udacity simulator servers as the server and the neural
network or python program serves as client. The simulator
outputs the images, the python program analyses it and

Figure. 1

Figure. 2

Figure. 3

Figure. 4 Figure. 5

Figure. 6

Figure. 7

Figure. 8

outputs the steering
angle.
The simulator
receives this
steering angle value
and turns the car
accordingly. The
whole process goes
on cyclically [1].

Figure. 9

https://youtu.be/8PgDVEBlR9g
https://github.com/udacity/self-driving-car-sim

	Slide Number 1

