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Background - Neural Style transfer

Neural style transfer is the process of using neural networks to transfer the style of one image onto the 

content another image.



Adaptive Instance Normalization

A modern technique for performing Neural Style transfer is to encode your style and content images with 

a VGG network, align the mean and variance (this is called adaptive instance normalization), and then 

decode with convolutional transpose operations. The decoder architecture is essentially a VGG flipped 

around. 

[Xun Huang et al. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization]



Adaptive Instance Normalization

Key equations:



Adaptive Instance Normalization

Style Interpolation:



Question

Can we create multiple meaningful axes of style? 

I.e. Can we give the user multiple “sliders” in which they can have more control over stylization of their 

photos and video?



Background - Octave Convolution

Octave convolutions work more efficiently than ordinary convolutional layers by separating the 

embeddings into high and low frequency regimes by spatially factorizing the input image.

[Yunpeng Chen et al. Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution]



Spatially Factorized AdaIN

In an attempt to gain more control over stylization outputs, one can spatially factorize the content and 

style images with Octave Convolution and perform adaptive instance normalization on the high and low 

frequency features separately.



Encoder Architecture



Decoder Architecture



Spatially Factorized AdaIN - equations
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Spatially Factorized AdaIN - equations



Encoder Pre-Training

Data (ImageNet): 

● Training images: 1,281,167
● Validation images: 50,000
● Classes: 1000

Hyperparameters:

● Optimizer: Ranger (RAdam + Lookahead)
● Weight Decay: 0.1
● LR Schedule: 3e-4 cosine anneal + restarts 

every 5 epochs
● Batch size: 64

Results: 61% top-1 accuracy



System-level Training

Data: 

● MSCOCO: ~80,000 content images
● WikiArt: ~80,000 style images

Hyperparameters:

● Optimizer: RAdam
● Learning Rate: 1e-4
● Learning Rate Decay: 5e-5
● Batch size: 24 content images + 24 style images

Notes: 

● The encoder parameters are frozen during 

system-level training. Only decoder 

parameters are trained.



Ablation Study on Loss Weights
Style weight: λ Content HF weight: βc   Style HF weight: βs
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Results



Results



Issue: Imperfect reconstruction

Possible Solution: Requires even more extensive 

experimentation and examination of loss function. 

Must be some non-obvious interaction with the LF 

and HF embeddings, or perhaps a training strategy 

left out of original AdaIN paper.

Blocker: No obvious path forward. Could be 

time-consuming

Open Challenges

Issue: Checkerboard artifacts

Possible Solution: Requires reflective-padding in 

the encoder (already exists in the decoder) 

Blocker: Hard to pad OctConv properly



Open Challenges

Issue: Style “shapes” not transferring well

Possible Cause: OctConv was designed to reduce 

“feature redundancy.” Is this redundancy the 

reason why AdaIN worked in the first place? 

Blocker: 


