
Le 1

Calvin Le

Senior Project

12/18/20

Technical Report: Shortest Path Visualizer

Abstract

Shortest path algorithms such as Dijkstra’s, A* search, greedy best-first search, and many more

are limited in terms of visualization. These algorithms can be a difficult process for one to

develop because of the complexity and time-consuming tasks required to create a functioning

application. Therefore, the interactable shortest path visualizer is aimed to increase student

participation by developing an application that display the process in which various shortest path

algorithm works. The application is able to display two algorithms: Dijkstra’s and A* search in

addition to other tools to help aid the user on creating, deleting, and clearing the path workspace.

Introduction

The Shortest Path Visualizer (SPV) is a Python-based application that utilizes GUI and path

finding algorithms to display the shortest path from a starting and end point. The application

features other tools that help guide the user in creating and deleting paths within the grid. There

are two frames that open during launch: the settings menu and grid workspace. The user is able

to interact with both windows. The settings menu allows the user with additional tools such as

clearing and changing the size of the grid. The grid workspace allows users to set start and end

nodes and creating or deleting barriers.

Path-Finding Algorithms

Le 2

The algorithms used for this application utilizes Dijkstra’s and A* search methods. Each method

finds the shortest path but functions differently in how they can find the end node.

Dijkstra’s Algorithm

The Dijkstra’s shortest path first algorithm picks unvisited nodes and calculates the distance

between the starting and end node. Starting with the start node, the algorithm selects all

neighboring nodes and iterates this process until the end node is found. Since each node has no

weight, all nodes must be considered during the path finding process. The shortest path is drawn

after the end node is found.

A* Search Algorithm

A* search algorithm functions similarly to Dijkstra’s algorithm except with the inclusion of a

heuristic function to guide the search. The A* search algorithm only consider paths that is

optimal. The algorithm calculates the distance from the start and end node and makes an

informed decision in scanning neighboring nodes. The process is repeated until the end node is

found and the application can generate the shortest path.

Design Specifications

The application is entirely software-based. The selected language used for the development of

this application is Python because they provide packages designed for GUI development and

image processing.

Interactable Grid

The program will use a grid of nodes to represent the map, each node has up to four traversable

edges: up, down, left, right. One node will be the start node and another the target node. Also, a

Le 3

node can be marked impassable by the user. For the A* search method, each node holds a heuristic

value based on its estimated distance from the target. The user will be able to clear and change the

size of the grid. The grid window features the grid of nodes visible to the user. The user can interact

with the grid using left mouse and right mouse click. If there are no start and node nodes seen on

the grid, the user can place the start node using left mouse click anywhere on the grid and set the

end node by using the same process. After the start and end node are set on the grid, the user can

add barriers by clicking or holding down left mouse button and delete nodes by clicking or holding

down right mouse button.

Settings Menu

The applications settings menu provides users with tools needed to interact with the grid. The

settings menu includes metrics such as the number of checks and the shortest path distance after

visualizing the path. The settings menu also includes a clear grid and change size button to help

the user make changes to the grid window. The user is also able to change search algorithms by

selecting the dropdown menu and selecting the algorithm of choice. By default, the selected

algorithm is A* search. The user can see the algorithmic process by clicking on the visualize

button. In addition, the user can select an image of a PNG file and convert it into the grid but this

feature is not fully implemented.

Le 4

Module Interaction Diagram

Initial User Interface Design

Le 5

The application was intended to be developed using one window but the decision to split the

settings and grid into two separate parts was necessary to allow the user to change the size of the

grid and allows development to be modular.

Initial Conceptual Model

The application was intended to process images but due to time constraints this implementation

never reached the final stages of development.

Le 6

System Context Diagram

Transition State Diagram

Le 7

Sequence Diagrams

Le 8

Final UX Design

Grid is created using Python’s pygame package. The grid is updated constantly when there are

changes within the algorithm and changes in settings menu. The settings menu uses Python’s

tkinter package to display text and buttons. Each button has its own function that interacts with

the grid.

Le 9

Use Case Scenario 1

A use case showing the A* search algorithm. The above image shows the shortest path (yellow)

to the end node seen in red. Barriers are made black, grey nodes indicate nodes already

considered and blue nodes indicate nodes to be considered.

Le 10

Use Case Scenario 2

A use case showing the Dijkstra’s path-finding algorithm.

Le 11

Test Cases

User Function

Name

User Function

Description

Expected

Results

Self-Testing

Results

Notes

Application

Launch

Display the

programs GUI

for grid and

settings

Working

resizable panel

and buttons

Functional Final Demo

Setting start and

end nodes

The user can

click anywhere

on the grid to set

start and end

nodes

Green node =

Start node

Red Node = End

Node

Functional Final Demo

Creating

Barriers

User can create

barrios using left

mouse click

anywhere on the

grid

Black node =

Barrier

Functional Final Demo

Deleting Nodes User can delete

colored nodes

including start,

end and barrier

nodes using right

click

Deleting nodes

will revert the

node back to

white.

Functional Final Demo

Clearing Grid The clearing grid

button will erase

any changes

made on the grid

and display a

blank grid.

All colored

nodes are

removed from

the grid

Functional Final Demo

Visualize Button The visualize

button will read

in the selected

algorithm from

the dropdown

menu and

display the

algorithm

processes on the

grid.

The grid will

populate with

colors and show

pathfinding

steps. The

algorithm ends

when a path is

found and

drawn.

Functional Final Demo

Changing Grid

Size

The user can

change size of

grid using the

slider and

change size

button

Upon selecting

the size and

clicking the

change size

button, the

application

Functional Final Demo

Le 12

should clear the

grid and change

the number of

nodes displayed.

Select Image The user can

select a png file

of a maze of

their choice and

the application

should convert

the image into

an interactable

grid

The application

should only read

in PNG files and

draw the image

into the grid.

Not fully

functionable,

only certain

images are able

to fully convert.

Final Demo.

Display

pathfinding

metrics

The application

should display

the number of

checks and the

distance of the

shortest path in

the settings

menu.

The checks and

shortest path

distance label is

updated after

visualization

ends

Functional Final Demo

Selecting

Algorithm

The user should

be able to select

between two

different

pathfinding

algorithms: A*

and Dijkstra’s.

A dropdown

menu will

display the

selected

algorithm and

visualize with

the selected

algorithm

Functional Final Demo

Conclusion:

The shortest path visualizer application is successful in displaying multiple pathfinding

algorithms and provide users with interactable tools to customize the grid. The application does

not however be able to fully render images onto the grid without user modifications. Some bugs

are still present in the program such as changing the size of the grid will display stretched out

nodes on the edges.

Le 13

References

Ably, Thaddeus, et al. “Dijkstra's Shortest Path Algorithm.” Brilliant Math & Science Wiki,

brilliant.org/wiki/dijkstras-short-path-finder/.

“A* Search Algorithm.” GeeksforGeeks, 7 Sept. 2018, www.geeksforgeeks.org/a-search-

algorithm/.

Sourabh_SinhaCheck out this Author's contributed articles., et al. “Find and Draw Contours

Using OpenCV: Python.” GeeksforGeeks, 29 Apr. 2019, www.geeksforgeeks.org/find-and-

draw-contours-using-opencv-python/.

“Edge Detection.” Edge Detection – Image Processing with Python, datacarpentry.org/image-

processing/08-edge-detection/index.html.

Mortoray, Edaqa. “Basic Pathfinding Explained With Python.” Codementor,

www.codementor.io/blog/basic-pathfinding-explained-with-python-5pil8767c1.

johnphilipjones. “Python: Accessing the Coordinate Position of a Mouse Click.” YouTube,

YouTube, 22 Feb. 2019, www.youtube.com/watch?v=XC4eJQCem_0.

“Tkinter Course - Create Graphic User Interfaces in Python Tutorial.” YouTube, YouTube, 19

Nov. 2019, www.youtube.com/watch?v=YXPyB4XeYLA.

mrcordiner. “Game Board with 2D Array / Processing + Python.” YouTube, YouTube, 13 Feb.

2015, www.youtube.com/watch?v=nsLTQj-l_18.

“Pathfinding Algorithms.” YouTube, YouTube, 5 Dec. 2014,

www.youtube.com/watch?v=X3x7BlLgS-4.

user11676515user11676515, et al. “How to Read a Maze from an Image and Convert It to

Binary Values in Python.” Stack Overflow, 1 Oct. 1968,

stackoverflow.com/questions/57610416/how-to-read-a-maze-from-an-image-and-convert-

it-to-binary-values-in-python.

