
Withun 1

Battery Matrix Management System

Technical Report

MCS4833 Senior Project 1

Calvin Withun

Adviser: Dr. CJ Chung

Withun 2

Abstract

 This project is an attempt at creating both a battery management system and the battery

circuit which it manages, referred to as a Battery Matrix Management System (BMMS) and

Battery Matrix (BM), respectively. Such a system has the ability to optimize the lifetime of

batteries, help to shield homes or particular devices against blackouts and brownouts, and

potentially save on the cost of electricity if utilized intelligently. This project involves knowledge

of electrical components to design the circuit diagram for the BM as well as programming

knowledge to write the BMMS software. Most effort went towards developing the software since

this project was developed in a software-oriented Senior Project course, but that software was

created with the eventual hardware in mind. Some problems came up concerning program

robustness, but every test case which was defined has been met and satisfied at this point in the

project’s development, which constitutes a successful project.

Withun 3

Introduction

 In an increasingly technological world, it is critical that people have efficient means of

storing and distributing power for everyday tasks. One idea gaining popularity is the battery

management system, a system which facilitates the behavior of a collection of batteries. This

project has the goal of designing a battery management system which will facilitate battery

charge, battery discharge, and dynamically balance battery voltages. This project, in addition to

designing software to accomplish this goal, will include a specific circuit which the software is

designed to run. This circuit will be referred to as a Battery Matrix (BM), thus leading the

software to be referred to as the Battery Matrix Management System (BMMS). The BMMS is

written in Python, and is designed to be run on a Raspberry Pi.

Withun 4

Background – Batteries

 Two batteries, connected in series, act as a single battery whose voltage is the sum of both

individual batteries. For example, battery A with a voltage of 3 volts, when connected in series with

battery B which also has 3 volts, creates a virtual battery C, whose voltage is 3 + 3 = 6 volts. This is a

simple method for reaching high voltages, and as such the BM utilizes serial batteries to provide power.

Under ideal circumstances, both of these batteries will charge and discharge at identical rates while

connected in series, causing their voltages to remain identical. However, subtle differences from things

such as temperature and specific chemical composition and previous battery use can cause two serial

batteries to become desynchronized, allowing one to charge or discharge more rapidly than the other.

Over time, this can lead to substantial differences in voltages, which will cause the batteries’ lifetimes to

decrease faster than normal.

 This issue can be fixed if two desynchronized serial batteries are instead connected in parallel.

When two batteries are connected in parallel, the higher-voltage battery will discharge into the lower-

voltage battery until they reach an equilibrium and resynchronize with each other. However, the voltage

of two parallel batteries is different from two serial batteries, so making this change while keeping all

batteries acting as a power supply will cause the power supply voltage to fluctuate, which is undesirable.

For this reason, the BM is designed so that any battery can be serially connected to its neighbors or can

be connected in parallel to any other batteries such that parallel and serial batteries do not interact with

each other, and only serial batteries provide power.

Withun 5

Background – Hardware

 In order for the BM to achieve its desired functionality, it must have a series of switches which

connect each battery to either the serial or parallel track, but not both. Computer-powered switches

come in a variety of forms; the ones utilized for this project are MOSFETs and relays. MOSFETs come in

two variety: P-type and N-type. P-type MOSFETs, without receiving a control voltage, acts as a closed

switch, while N-type MOSFETs act as an open switch. Relays come in many designs, the most relevant of

which to this project is the DPST (double-pole single-throw) NO (normally-open) relay. This relay

facilitates two separate circuit connections, and unlike MOSFETS, can transfer charge in either direction,

making it ideal for controlling each battery’s parallel track connection since two parallel batteries could

attempt to equalize in either direction.

 The BM must also provide a means for the BMMS to measure voltages across each battery,

otherwise the BMMS will be blind. One would typically use a multimeter / voltmeter when measuring

voltage by hand, but a computer must use other means to perform the task. This project makes use of

analog-to-digital (ADC) converters to inform the BMMS of the voltages across batteries. The particular

model used allows for 8 measurements to be taken at a time, although this may not be a usable solution

to the problem of multiple batteries (detailed under Problems).

Withun 6

Test Results

SW Feature Name Feature Description Expected Behavior/Output Self-Testing Results Notes

Battery Voltage

Monitoring

A feature which

measures the

voltage across each

individual battery

The BMMS shall detect an

accurate, real-time voltage

across any electric

potential

Demonstrates

expected behavior

for 1 battery, but

may not work for 2+

batteries (detailed

under Problems)

Battery Circuit

Monitoring

A feature which

tracks which circuit

(serial, parallel, or

disconnected) each

battery is on

The BMMS shall be aware

of which circuit each

battery is connected to at

all times

Demonstrates

expected behavior

Circuit

Facilitation

A feature which

controls what

circuit a battery is

connected to

The BMMS shall always

move the highest- and

lowest-voltage batteries

onto the parallel circuit,

while keeping all others on

the serial circuit

Demonstrates

expected behavior

Event Logger A feature which

records all BMMS

activity as well as

all detected events

The BMMS logs shall

contain entries for every

time batteries are moved

between circuits, every

Demonstrates

expected behavior

Withun 7

time a blackout or

brownout occurs, every

time the BMMS enters or

exits the desired charging

window, etc.

User Notifications A feature which

notifies the user

whenever relevant

events occur such

as errors, blackouts,

battery

disconnections, etc.

The BMMS shall display

notifications for its user on

a Notifications tab

whenever relevant events

occur

Demonstrates

expected behavior

Config Manager A feature which

allows the user to

modify the rules

regulating the

behavior of the

BMMS

The BMMS shall have an

interface for viewing and

editing the BMMS settings

Demonstrates

expected behavior,

but is not robust and

can be used to crash

the program

(detailed under

Problems)

Restrictive

Charging

A feature which

manages the

conditions under

which the BMMS

may charge its

Battery Matrices

The BMMS will not

attempt to charge outside

of its desired charging

hours, unless it is set to

charge outside of the

desired charging hours

Demonstrates partial

functionality

(detailed under

Problems)

Withun 8

during low charge.

The BMMS shall attempt

to charge during desired

charging hours, but will

not exceed the maximum

tolerated voltage

Time Display A feature which

displays the current

time

The BMMS shall display

the current time to the user

Demonstrates

expected behavior

Graphical Display A feature which

displays

information to the

user

The BMMS shall display

information to a screen for

the user to view such as

time, battery voltages,

projected battery life, etc.

Demonstrates

functional behavior,

but is not

particularly

aesthetically

appealing due to

inexperience with

utilizing Python’s

tkinter library

Battery Damage

Detection

A feature which can

detect when a

battery is failing

The BMMS shall notify

the user whenever a

battery drops below

performance voltage and

recommend replacing it

Demonstrates

expected behavior

Withun 9

Problems

 This project encountered a variety of roadblocks and problems, some of which were

resolved and some of which were not. First and most foremost is the issue of the BMMS not

having a viable BM to operate yet. While a conceptual diagram for the BM has been designed,

there was an inadequate understanding of electrical engineering principles to construct a

functional circuit from the concept. The current understanding of the issue is that the batteries

being used in the test setup provided an insufficient voltage to properly power the MOSFETs

being used, causing the MOSFETs to never properly open circuits. As such, two batteries could

never be isolated on the parallel track, but were always connected to the serial track. It would be

interesting to use more powerful batteries or less powerful MOSFETs in a future attempt and see

if the circuit concept will work.

 A second issue with the project is the ADC being used to measure voltages across

batteries. The test setup used for development has the ADC connected to a ground and to the 5V

pin of the Raspberry Pi for defining the voltage range. However, this will likely cause

complications if directly translated to the BM. The ground can be connected to some common

ground, but if the maximum voltage line is connected to any battery, the subsequent battery risks

going beyond the voltage range provided, causing the ADC to not report accurate values. It may

be necessary in the future to designate one ADC per battery to avoid this issue, or further

investigate the function of the ADC in use to better understand how to connect multiple batteries

to it at once in the desired way.

 A third complication came from the restrictive charging feature. The feature currently

suffers from a lack of robustness; it can successfully facilitate charging schedules where the

Withun 10

charging window begins and then ends on the same calendar date, but it cannot facilitate a

schedule which begins in the evening of one calendar date and ends in the morning of the next

calendar date. For example, a charging window of 8:00am to 4:00pm can be handled by the

BMMS, but a charging window of 8:00pm to 4:00am cannot be handled. The BMMS will never

charge the system under such a charging schedule. This test case was not considered during

development, and consequently was only discovered later on.

Withun 11

Dependencies

 This project only has one external dependency, which is a library for communicating with the ADC

currently being used. This library may be downloaded by running the following command in a command

shell:

$ sudo pip3 install adafruit-circuitpython-mcp3xxx

Withun 12

Conclusion

 All things considered, this project can be essentially considered a success. The BM is not

available, though that issue is more focused on electrical engineering, which is not the primary focus of

the course which facilitated this project. The BMMS software is functional despite not having a BM to

drive, and is essentially prepared to drive one should one be made available to it. The BMMS performs

all of its intended functions accurately, though there are some robustness issues which make it prone to

crashes if misused. This, combined with a circuit concept diagram for the BM, makes for a promising

project to continue developing in the future. Certain elements of the software, such as events for

logging and notifications, are easily expandable for new types of events (such as brownouts or

blackouts), meaning that the framework of the program is conducive to further development.

 It is recommended that further development on the BMMS be postponed until a functioning BM

has been constructed, since all progress in the BMMS is only hypothetically useful without a BM to verify

its behavior. Unfortunately, since this task focuses on electrical engineering rather than software

development, the author of this project is unsure whether he will continue in Senior Project 2 or begin a

new project.

Withun 13

Images

Image 1: Battery Status Tab. Each battery has a voltage display and a status display to indicate

which circuit it is currently on. The end-product formatting will look nicer than this display.

Withun 14

Image 2: Settings Tab. Each configurable setting appears on this tab and is editable by the user.

The end-product formatting will look nicer than this display.

Withun 15

Image 3: Notifications Tab. This tab displays all notifications that are generated for the user. The

end-product display will look neater, and will have buttons for dismissing each notification so
that the notifications window does not fill up.

Withun 16

Image 4: Modular Battery Matrix Circuit Example. The green line indicates the serial circuit,
and the red line indicates the parallel circuit. The prototype model for this circuit will utilize a

total of eight batteries. Some circuitry not shown in this image as it is still being designed.
NOTE: the SPDT relay, in the final BM design, most likely should be replaced with two opposite

MOSFETs as MOSFETs are not mechanical and thus are faster to respond than relays.

Withun 17

Image 5: Testing Setup for Battery Voltage Monitoring. While viable for a single battery, it may
not be viable for measuring multiple batteries in serial.

Image taken from https://learn.adafruit.com/mcp3008-spi-adc/python-circuitpython

Withun 18

References

https://learn.adafruit.com/mcp3008-spi-adc/python-circuitpython

