
JetML: Finding Jets in Heavy Ion Particle Collisions with Machine Learning
Algorithms

Mark Kocherovsky
Lawrence Technological University, Department of Mathematics and Computer Science, Southfield, MI 48075

(Dated: 18 Dec 2020)

Finding instances of “jets” in simulated relativistic heavy-ion collision events is presently done
by checking the momenta of particles produced in the collision. This paper explores an alternate
method of tagging events with jets using the event-level data alone, without having to check specific
patterns in the particle-level data. Six basic machine learning algorithms are tested on their ability
to find events with jets within four datasets, where an event with at least one jet is classified as
“Jet,” and an event without jets is classified as “No Jets.” It is found that such a method is viable,
and that the decision tree classifier algorithm can determine the presence of at least one jet with
100% accuracy in a short-enough amount of time to be practical. The program can also generate
graphs visualizing event data and the effectiveness of each algorithm, as well as output each model
for future use. Although the program, as of yet, does not currently derive the amount of jets in
each event, the experiment shows that it is possible to use machine learning to detect the presence
of jets using data from relativistic heavy-ion collisions.

I. BACKGROUND

A. Physics Background

When two particles (such as two protons or two atomic
nuclei) collide at relativistic (ultrahigh) velocities, a slew
of new particles are created. It is thought that there
are two methods by which particles are created. One
of these methods is “thermal” production, where parti-
cles are formed out of cooling quark-gluon plasma that is
created by the collision. The other possible method is a
“jet“ of particles that is caused by a kicked out quark or
gluon (the fields between the quarks will break, creating a
shower of particles). Neither thermal nor jet production
can be individually detected by instruments; experiments
can only detect particles as they come into contact with
the detector. Therefore, the existence of jets must be
determined mathematically from properties of the resul-
tant particles [1]. Jets are defined using the following
properties:

• Jet cone radius (in momentum space) R = 0.4.

• Total jet momentum PT > 5 GeV , where PT is
event total momentum in the transverse – perpen-
dicular to the particle beam – direction.

• Leading particle pT > 8 GeV , where pt is the mo-
mentum in the transverse direction for an individ-
ual particle.

• Sub-leading particle pT > 5 GeV .

• Constituent particles have 0 < pT < 1 GeV .

• Back-to-back jets are required, with a tolerance of
0.4 radians from π.

Figure 1 shows a diagram of jets in a proton-proton
collision [1].

FIG. 1. A diagram of jets in a proton-proton collision. The
red arrow indicates the leading particle, and the black arrows
indicate constituent particles. The cone represents the jet in
momentum space.

Collisions can be simulated using PYTHIA, developed
at Lund University. PYTHIA enables researchers to sim-
ulate collisions between various particles at various levels
of energy, and collect data from the simulated collision
events [2]. The data can then be organized, read, and
presented using the ROOT Data Analysis Framework for
C++ [3].

B. Machine Learning Background

Machine learning is a field of study focusing on algo-
rithms capable of learning from experience [4]. Though
there are several methods and algorithms to perform ma-
chine learning, the JetML program tests and compares
six classification (assigning a category based on input
data) algorithms. Logistic regression (LR) uses a lo-
gistic function that linearly combines the given data and
predicts the probability of that data resulting in a de-



2

sired outcome [5]. By comparison, a linear discrimi-
nant (LDA) function is a specifically linear combination
specifically designed to produce a classification [6]. The
k-nearest neighbor (KNN) algorithm divides a set of
data (represented on a scatter plot) into several subsets
called “neighborhoods.” The algorithm will then calcu-
late local means, variances, etc., and output classifica-
tions based on these values [7]. Decision tree clas-
sifiers (DTC) build a set of paths in a tree format that
allows the program to assign a classification using a set of
sequential decisions (hence the name “decision tree”) [8].
The Gaussian naive Bayes (GNB) algorithm uses the
Bayes theorem to estimate a Gaussian distribution for
classification [9]. Finally, support vector machines
(SVM) map inputs to a multi-dimensional vector space,
from which a linear surface is constructed. This allows
classification [10].

C. Purpose of the JetML Program

The purpose of the JetML program is to test the afore-
mentioned machine learning algorithms to compare each
algorithm’s ability to use collision event data to pre-
dict whether or not that event contains a jet. Ability is
measured using a built-in accuracy measurement in the
Python scikit-learn library (see Section II B). In addition,
the algorithms should be able to perform the calculations
quickly in order to be practical.

II. PROGRAM REQUIREMENTS

This section aims to explain what the JetML program
is meant to accomplish and what it is meant to output
to the user. For a more in-depth explanation of how the
program operates, please see Section III.

A. Organizing the Data

Before applying machine learning, the data must be
preprocessed. This was to be done with a program (called
EventCataloguer.cxx) on our research team’s shared
computer. The event cataloguer program took quanti-
tative data at the event level (see Section IV A) and out-
putted them into a comma-separated values (.csv) file. In
addition, the program would mark down whether or not
the event contained jets (labeled as “Jet” or “No Jets”).
Once complete, the file can then be read by the JetML
program proper.

B. The JetML Program

The JetML.py program is meant to ascertain whether
or not basic machine learning algorithms could accurately
predict if an event contain jets or not. The program tests

logistic regression, linear discriminant analysis, k-nearest
neighbors, decision tree classifier, Gaussian naive Bayes,
and support vector machine algorithms. Each of these
models are found in the scikit-learn (sklearn) Python
library [11]. The models are trained on half the data,
and then tested on the other half. JetML then returns
an accuracy score between 0.0 and 1.0. A higher score
indicates a more accurate algorithm. Secondary objec-
tives included time performance, as an algorithm that is
too slow loses practical value; and graphical representa-
tion of the results, in the form of a bar graph comparing
the various accuracy scores, a plot showing which events
do or do not have jets in relation to the numerical data,
and precision-recall curves (precision is a measure of the
algorithms’ ability to avoid false positives, and recall is a
measure of the algorithms’ ability to avoid false negatives
[12]) for each algorithm. Appendix A shows examples of
each graph. Finally, the program will output the trained
models for future use. A graphical representation of the
requirements is shown in Figure (2).

FIG. 2. System Context Diagram for the JetML program.

III. DESIGN

The preprocessing program, EventCataloguer.cxx, is
built in C++. It opens each data file and loops through
each event in series, writing the relevant data to a .csv
file.

The JetML program is a Python program that takes the
data file and imports the data into a table. The data is
then split into the features (input data) and label (resul-
tant classifier). The program then sequentially splits the
input data into testing and training sets (the proportion
is given by the split proportion variable, set to 0.5 by
default) in the JetML function. The function will then
perform training, and then output the trained model as
a .joblib file. It will then perform predictions on the
testing set and measure the accuracy (a score of 1.0 in-



3

dicates that the model is accurate 100% of the time).
Finally, the function measures and records how long the
model took to train and test, and outputs the relevant
data as lists. The program will then write these results
to a text file as output.
JetML.py then moves on to creating graphical output.

First, it creates a bar graph showing the accuracy score
of each algorithm. It will also label each bar with the
numeric value, and save the graph as results.png.

The second graph is the precision-recall comparison.
The labels are at first normalized, so that if the input
data has a jet, then it will be marked as 1 in the array, and
otherwise will be marked as 0. The program then makes
predictions and calculates the precision-recall curve, and
plots it on the graph. The program does this for each
model, enabling a comparison of each model. This is
then plotted with a no-skill model value (a no-skill model
essentially is the probability of correctly assigning the
desired label to events with jets at random [13]. The
precision-recall graph is saved as precreccurve.png.

Finally, JetML.py creates a scatter plot using the input
features. Though the user may choose to change the code
to plot different features on the axes, the program cur-
rently plots PTtot against Ntot (see Section IV A). Each
data point is colored depending on the label. Events
without jets are marked in red, while events with at least
one jet are marked in green. This graph – or variations
of it – can be used to infer how the various measure-
ments influence the final classification. This is saved as
jets nojets.png. All other functionality is command-
line based.

A diagram of this design can be seen in Figure (3).

FIG. 3. Flowchart for the JetML program.

IV. DATASETS AND RESULTS

A. Datasets

JetML was tested on four datasets. Each dataset con-
tained several events, each with sixteen measurements:

• Mult: the total number of all particles created in
the collision, including those that themselves form
or separate into new particles.

• Ntot: the end total number of particles that pass
through filtering meant to mirror the limitations of
a real detector.

• Nhard: the end total number of “hard scatterings”
(large momentum transfers in the movement of par-
ticles [14]).

• Nch: the end total number of electrically charged
particles in Ntot.

• Nplus: the end total number of particles with pos-
itive charge.

• Nminus: the end total number of particles with neg-
ative charge.

• E tot: the total energy of all particles in mult
(will be constant within each dataset, measured in
GeV ).

• Ech tot: the end total energy of all charged parti-
cles (measured in GeV ).

• ET tot: the total energy of particles in the trans-
verse direction (measured in GeV ).

• ETch tot: the total transverse energy of all charged
particles (measured in GeV ).

• PT tot: the end total momentum of all charged
particles in the transverse direction (measured in
GeV/c).

• PTch tot: the end total momentum of all charged
particles in the transverse direction (measured in
GeV/c).

• sqrts (
√
s): the center-of-mass collision energy per

nucleon (a proton or a neutron in a nucleus). This
will be constant within each dataset as well (mea-
sured in GeV ).

• Ncoll: the total number of sub-collisions between
separate nucleons.

• Npart: The total number of wounded nucleons
(have interacted with others at least once [15]).

• b: Impact parameter (distance between the centers
of the involved nuclei, measured in fm).

• Finally, there is an indication of “Jet” or “No Jets”
in the event as a string.

JetML was tested on four datasets.
Two were “full” datasets. The first,
PbPb2760GeVcataloguedEvents.csv, consists of three
million lead-lead collision events with

√
s = 2760 GeV .

The second, pp200GeVcataloguedEvents.csv, consists
of thirty million proton-proton collision events with√
s = 200 GeV . The other two were partial datasets.

PbPb2760GeVcataloguedEvents small.csv contains



4

the first ten thousand events from its full counterpart,
while pp200GeVcataloguedEvents small.csv consists
of the first three million events from the full proton-
proton dataset. The former was created as a partial set
mainly to facilitate rapid testing of the Event Cataloguer
and JetML programs, as using the full datasets takes far
longer to run. The latter partial dataset was created to
mirror the lead-lead partial dataset.

B. Results

Table I shows the accuracy metrics of each dataset for
each algorithm, where each model trains on half of the
dataset, and is then tested on the other half. Note that
for all datasets other than the small PbPb2760 GeV set,
support vector machine models took too long to train
and test, so SVM was cut for those datasets. As Ta-
ble II shows, training and testing support vector ma-
chines takes two orders of magnitude longer than the
next longest (logistic regression). In addition, LR and
KNN results for the pp200 GeV datasets (both full and
partial) are not exactly 1.0, but they are rounded up from
the ten-thousandths digit.

TABLE I. Table showing the accuracy (between 0 and 1) of
each machine learning algorithm for each dataset.

Dataset LR LDA KNN DTC GNB SVM
PbPb2760 (small) 0.961 0.938 0.963 1.000 0.947 1.000

pp200 (small) 1.000a 0.999 1.000a 1.000 0.897 b

PbPb2760 0.958 0.934 0.968 1.000 0.944 b

pp200 1.000a 0.999 1.000a 1.000 0.903 b

a Rounded up from 0.999...
b Not measured due to overly large calculation times.

Table II, which shows the duration (in seconds) of each

algorithm run on each dataset; Table III, which shows the
no-skill model value for the full datasets; and each graph
for the full datasets can be found in Appendix A.

V. CONCLUSION

My results show that it is possible to use the decision
tree classifier and support vector machine algorithms to
predict whether or not there are jets in a particle-particle
collision event with 100% accuracy. However, as support
vector machines take far longer to run than the other
models, their usage is not practical, especially for large
datasets. Ergo, the decision tree classifier model is the
most practical of the six basic machine learning algo-
rithms.

A. Future Considerations

There are several ways that this project can be ex-
panded on. The JetML program could be reworked to
use the individual particles detected in the event to train
the model, and make predictions of how many jets were
in the event – not just if there is a jet at all. In addi-
tion, the JetML program could also be expanded to use
more types of machine learning algorithms. Advanced
algorithms could be tested and implemented, as could
a neural network to test their effectiveness and perfor-
mance. In addition, it would be interesting to explore
whether or not machine learning can allow classification
without having to define what a jet is using the tradi-
tional algorithms beforehand.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the U.S. NSF grant
PHY- 1913005.

[1] M. V. Kocherovsky, The variance of high energy nuclear
collisions (2020), [PowerPoint Slides].

[2] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduc-
tion to PYTHIA 8.1, Computer Physics Communications
178, 852 (2008), [Online; accessed 13-December-2020].

[3] R. Brun and F. Rademakers, ROOT - an object oriented
data analysis framework, Nucl. Inst. & Meth. in Phys.
Res. 389, 81 (1996), [Online; accessed 13-December-
2020; See also ‘ROOT’ [software]].

[4] C. Chung, Neural networks and deep learning with
Python (2020), [PowerPoint Slides].

[5] A. S. Hess and J. R. Hess, Logistic regression, Transfusion
59, 2197 (2019), [Online; accessed 05-December-2020].

[6] A. R. Webb, K. D. Copsey, and G. Cawley, Statisti-
cal Pattern Recognition, 3rd ed. (John Wiley & Sons,
Incorporated, 2011) pp. 20–21, [Online; accessed 05-
December-2020].

[7] N. S. Altman, An introduction to kernel and nearest
neighbor nonparametric regression, The American Statis-
tician 46, 10.1080/00031305.1992.10475879 (1991), [On-
line; accessed 06-December-2020].

[8] B. Kaminski, M. Jakubczyk, and P. Szufel, A framework
for sensitivity analysis of decision trees, Cent Eur J Oper
Res 26, 135 (2018), [Online; accessed 06-December-2020].

[9] J. C. Griffis, J. B. Allendorfer, and J. P. Szaflarski,
Voxel-based gaussian näıve bayes classification of is-
chemic stroke lesions in individual t1-weighted mri scans,
Journal of Neuroscience Methods 257, 97 (2016), [Online;
accessed 06-December-2020].

[10] C. Cortes and V. Vapnik, Support-vector networks, Ma-
chine Learning 20, 273 (1995), [Online; accessed 06-
December-2020].

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.1111/trf.15406
https://doi.org/10.1111/trf.15406
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1007/s10100-017-0479-6
https://doi.org/10.1007/s10100-017-0479-6
https://doi.org/10.1016/j.jneumeth.2015.09.019
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018


5

napeau, M. Brucher, M. Perrot, and E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Ma-
chine Learning Research 12, 2825 (2011).

[12] L. P. Coelho and W. Richert, Building Machine Learning
Systems with Python - Second Edition., 2nd ed., Commu-
nity Experience Distilled (Packt Publishing, 2015) pp.
116–117, [Online; accessed 06-December-2020].

[13] J. Brownlee, Roc curves and precision-recall curves for
imbalanced classification (2020), [Online; accessed 06-
December-2020].

[14] H. Frisch, Hard parton scattering (2013), [PowerPoint
Slides].

[15] H. Bialkowska, Wounded nucleons, wounded quarks, and
relativistic ion collisions, Acta Physica Polonica B37
(2006), arXiv:nucl-ex/0609006 [nucl-ex].

Appendix A: Additional Data and Graphs

TABLE II. Table showing the duration (in seconds) of each
machine learning algorithm for each dataset.

Dataset LR LDA KNN DTC GNB SVM
PbPb2760 (small) 0.286 0.087 0.268 0.081 0.032 63.19

pp200 (small) 195.7 33.52 427.2 75.22 22.50 b

PbPb2760 51.07 44.14 184.5 105.8 27.58 b

pp200 1449 634.3 a 1592 476.5 b

a Could not be properly measured, as the program ran for about
eight hours every day, and was paused in-between.

b Not measured due to overly large calculation times.

TABLE III. Table of the no-skill models’ values of the full
datasets.

Dataset No-skill model value
PbPb2760 0.674

pp200 9.177e-5

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
https://hep.uchicago.edu/~frisch/talks/Croninfest_final.pdf
https://arxiv.org/abs/nucl-ex/0609006


6

FIG. 4. Graphical comparison of machine learning model accuracy for the full pp200 GeV set.

FIG. 5. Graphical comparison of machine learning model accuracy for the full PbPb2760 GeV set.



7

FIG. 6. Precision-Recall Curve with a no-skill value of 9.177e-5 for the full pp200 GeV dataset. Points above the no-skill line
and closer to (1.0, 1.0) indicate a better model.

FIG. 7. Precision-Recall Curve with a no-skill value of 0.674 for the full PbPb2760 GeV dataset. Points above the no-skill line
and closer to (1.0, 1.0) indicate a better model.



8

FIG. 8. A plot showing which events have or do not have jets using PTtot versus Ntot as axes for the full pp200 GeV dataset.

FIG. 9. A plot showing which events have or do not have jets using PTtot versus Ntot as axes for the full PbPb2760 GeV set.


	JetML: Finding Jets in Heavy Ion Particle Collisions with Machine Learning Algorithms
	Background
	Physics Background
	Machine Learning Background
	Purpose of the JetML Program

	Program Requirements
	Organizing the Data
	The JetML Program

	Design
	Datasets and Results
	Datasets
	Results

	Conclusion
	Future Considerations

	Acknowledgements
	References
	Additional Data and Graphs


