
SEML: Developing Scratch Programming Extensions for Machine Learning

Mark Kocherovsky
Lawrence Technological University, Department of Mathematics and Computer Science, Southfield, MI 48075

(Dated: 05 Feb 2021)

Machine learning is the study of programming algorithms capable of “learning” from sets of
given data and previous experiences. Teachable Machine is an experimental tool created by Google
to allow users to apply machine learning to create neural networks (deep learning). Scratch is
a programming language and environment created by the Massachussetts Institute of Technology
Multimedia Lab to assist in K-12 computer science education. This paper demonstrates that it is
possible to import Teachable Machine models into Scratch (both using a hardcoded model location
and a model provided dynamically by the user through a URL), and then use that model in a
Scratch 3.0 program.

I. BACKGROUND

A. Machine Learning Background

Machine learning is a field of computer science that
studies algorithms capable of training predictive models
from given sets of data and previous experience [1] [2]
[3]. To make machine learning more accessible, Google
offers a web-based tool called Teachable Machine to al-
low users to make their own models using image, pose,
and sound-based training [4]. Teachable Machine itself
uses TensorFlow.js [5], which uses JavaScript to create
a neural network for training and output [6]. It allows
users to upload the trained model to the cloud for later
usage, which is an integral component in SEML.

B. Scratch Background

Scratch is a programming language/environment cre-
ated by the Lifelong Kindergarten Group at the Mas-
sachusetts Institute of Technology (MIT) Media Lab to
teach young people programming concepts. It is a vi-
sual language that uses blocks to represent lines of code.
The user can directly see and add objects on the output
screen (such as Scratch’s mascot, a cartoon cat, or the
background), the user can import or record sounds, and
can provide input through the keyboard and mouse. The
system is very versatile, with the inclusion of variables,
control features such as loops and conditional statements,
logic, and the ability for the user to create their own
functions. Using this environment, the user can easily
program their own animations and games [7].

C. Introduction to SEML

The SEML Program has two components. First, a
test extension was made to detect the location of a user’s
palm using a Teachable Machine model. However, the
main component of SEML is the ability to directly im-
port a Teachable Machine model without the use of any
intermediaries.

II. PROGRAM REQUIREMENTS

This section aims to explain what the SEML program
is meant to accomplish and what it is meant to output
to the user. For a more in-depth explanation of how the
program operates, please see Section III. In this paper,
the term “Scratch” generally refers to Scratch 3.0, the
most recent version.

A. Palm Detection

The palm detection test module will be able to detect
the presence of the user’s palm using their webcam and
return its position, which the user can then export to a
variable. This is a test component to gauge Scratch’s
ability to import Teachable Machine models from the
cloud.

B. The Full SEML Extension

The full SEML extension shall allow the user to import
any Teachable Machine model from the cloud, provided
that they have the URL. SEML will then allow the user
to implement the model in the program, which will return
output that can be exported into variables.

III. DESIGN

Scratch 3.0 extensions are JavaScript files that contain
a class that defines the extension itself, each block, the
function corresponding to each individual block, and var-
ious helper functions. Blocks can take arguments, include
graphics, and contain menus [8]. For example, Figure (1)
shows the code corresponding to the Import Model block
in SEML, and Figure (2) shows the structure of blocks
in the Palm Reader model.



2

FIG. 1. The SEML importModel function that corresponds to the Import Model block as JavaScript code.

A. Palm Detection

The Palm Detection test module begins by requiring
the user to import the model from the cloud. Since
the Teachable Machine model already exists, its URL
is hardcoded in the program’s backend. The import
command, Import Block, then connects the user to the
cloud, downloads the palm detection model, and initial-
izes the model.

The user can then select blocks entitled X Coordinate
and Y Coordinate, which will return the x and y coor-
dinates of the user’s palm as described in IV A. These
blocks function by using the model to ascertain the loca-
tion of the user’s palm.

FIG. 2. Palm Reader blocks defined in JavaScript

B. Dynamic Importation

The main SEML program will function nearly identi-
cally to the Palm Detection test module. However, there
are two key differences. First, the Import Model com-
mand includes a text input field in which the user can
place the URL of a Teachable Machine model. The block,
when run, then automatically initializes the given model
based on the URL, which uses TensorFLow libraries [9].

Secondly, instead of specific X Coordinate and Y
Coordinate blocks, SEML only provides a single Return
Prediction block, which allows the user to export the
results of their model into a variable, as SEML requires
a more general set of commands. The diagram in Figure
(3) provides a high-level overview of the SEML module’s
design.

FIG. 3. High Level Diagram of the SEML module



3

IV. MODELS AND RESULTS

A. Models

The Palm Detection model has five classes. The first
four (A1, A2, B1, and B2) indicate the quadrant where
the user’s palm is located as seen by the webcam. The
fifth is a default case that indicates the user is not holding
up their palm.

The Palm Detection model was trained using Teach-
able Machine, where the author held his hand up (palm
towards the camera) in each of the four quadrants and
took pictures using the webcam. The author took several
hundred pictures in each quadrant at various angles to
provide the model with a better understanding of what
constitutes a palm. The model was then exported as a
Tensorflow Javascript model to the cloud.

B. Results

1. Palm Detection

A simple Scratch program to determine the location
of the user’s hand is given in Figure (4). When the
program is run, the webcam will turn on, Import Model
will import the model and assign it as a global variable,
and then the x and y coordinates will be evaluated in
an indefinite loop. Figure (5) shows the result of this
program. This demonstrates that Deep Learning models
can be used in Scratch 3.0 programs.

FIG. 4. A simple Palm Reader program.

2. SEML

A basic program using the SEML extension is shown
in Figure (6). In this example, Import Model is given

FIG. 5. The result of the Palm Reader Program. Note that
the program has a tendency to treat the author’s head as his
hand, thus confusing the model somewhat. However, it is
clear that the Scratch extension itself works.

FIG. 6. A simple SEML program. The URL given is the a
model to recognize a plush kitten and a puppy.

the a model that recognizes a puppy or a kitten, trained
using Teachable Machine with 500-800 images for each
class (“Puppy”, “Kitten”, “None”). The code imports
the model , and returns the class as a string. The results
are shown in Figure (7).

This proves that it is possible to train a model using
Google’s Teachable Machine, upload it to the cloud as
a JavaScript model, import it into Scratch through an
extension, and then use the model in a program.

V. CONCLUSION

SEML proves that it is possible to dynamically import
trained JavaScript neural network models into Scratch
3.0 for use in a Scratch Program. As Scratch is meant to
be an educational software, SEML thus also has educa-
tional applications. SEML can be used to teach students
(at the K-12, university, and even professional level)
about the basics of neural networks by allowing them to
train a model and apply it in a relatable manner without
having to go in-depth into the programming background.
It has been shown that students may learn better through
the use of a kinesthetic (hands-on) component [10] [11],



4

FIG. 7. Output from a SEML program using the a model to
determine whether it sees a plush kitten or puppy.

which SEML would provide if used with a Tensorflow

JavaScript model.
Future development of SEML should take several fac-

tors into account. First, the extension does not come
with any graphics, which would need to be developed to
make the extension visually appealing and easier to un-
derstand. Second, SEML so far can only handle image-
based models. A more advanced version of SEML should
be able to use Teachable Machine audio and pose models
as well. Thirdly, it might be of interest to some to see
the numerical value of each class (how probable that what
the model sees corresponds to a given classification), so
returning these values could be a possible design target
for further development.

VI. ACKNOWLEDGEMENTS

Thanks to Dr. Chan-Jin Chung for being my Faculty
Advisor for this project.

Thanks to Dr. Mitchel Resnick, Eric Rosenbaum,
GitHub users apple502j and adroitwiz, Dale Lane, and
the Scratch Multimedia Lab for helping with technical
issues.

[1] C. Chung, Neural networks and deep learning with
Python (2020), [PowerPoint Slides].

[2] C. Chung, Introduction to AI & ML with Scratch
[Pt. 1] (2021), [PowerPoint Slides; Online; accessed 28-
February-2021].

[3] C. Chung, Introduction to AI & ML with Scratch
[Pt. 2] (2021), [PowerPoint Slides; Online; accessed 28-
February-2021].

[4] Alphabet Incorporated, Teachable Machine (2021), [On-
line; accessed 02-February-2021].

[5] Alphabet Incorporated, Teachable Machine - FAQ
(2021), [Online; accessed 02-February-2021].

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,

F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-
scale machine learning on heterogeneous systems (2015),
software available from tensorflow.org.

[7] M. Marji, Learn to Program with Scratch, 1st ed. (No
Starch Press, 2014) [Online; accessed 06-December-2020].

[8] K. Chadha, C. Willis-Ford, and u9g, Scratch 3.0 Exten-
sions (2020), [Online; accessed 30-March-2021].

[9] I. Alverado and J. Jongejan, Teachable Machine Library
- Image (2019), [Online; accessed 28-February-2021].

[10] C. Chung and M. Kocherovsky, CS+PA2: Learning com-
puter science with physical activities and animation — A
MathDance experiment, in 2018 IEEE Integrated STEM
Education Conference (ISEC) (2018) pp. 262–267.

[11] M. Shamir, M. Kocherovsky, and C. Chung, A Paradigm
for Teaching Math and Computer Science Concepts in
K-12 Learning Environment by Integrating Coding, An-
imation, Dance, Music and Art, in 2019 IEEE Integrated
STEM Education Conference (ISEC) (2019) pp. 62–68.

https://www.robofest.net/2021/ML_Scratch1.pdf
https://www.robofest.net/2021/ML_Scratch1.pdf
https://www.robofest.net/2021/ML_Scratch2.pdf
https://www.robofest.net/2021/ML_Scratch2.pdf
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/faq#Diving-Deeper
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/LLK/scratch-vm/blob/develop/docs/extensions.md
https://github.com/LLK/scratch-vm/blob/develop/docs/extensions.md
https://github.com/googlecreativelab/teachablemachine-community/blob/master/libraries/image/README.md
https://github.com/googlecreativelab/teachablemachine-community/blob/master/libraries/image/README.md
https://doi.org/10.1109/ISECon.2018.8340497
https://doi.org/10.1109/ISECon.2018.8340497
https://doi.org/10.1109/ISECon.2019.8882015
https://doi.org/10.1109/ISECon.2019.8882015

	SEML: Developing Scratch Programming Extensions for Machine Learning
	Background
	Machine Learning Background
	Scratch Background
	Introduction to SEML

	Program Requirements
	Palm Detection
	The Full SEML Extension

	Design
	Palm Detection
	Dynamic Importation

	Models and Results
	Models
	Results
	Palm Detection
	SEML


	Conclusion
	Acknowledgements
	References


