
Real Time Eye Blink Detection Interface
Rajana Nayak and Zhen Liu

Department of Computer Science

Lawrence Tech University, Fall 2018

Faculty Advisor: Dr. CJ Chung

Abstract

Robustness and accuracy in real time eye blink detection has been one of the most challenging problems
in computer vision, and it has many applications such as driver fatigue analysis and face live detection.
The existing methods toward eye blink detection includes traditional image processing method for eye
blink computation, in which thresholds are specified to find the whites of the eyes and if the whites
decrease for a period of time, an eye blink is calculated. In this paper, we present a method based on
automatic tracking of facial landmarks to localize the eyes and eyelid contours. Automatic facial
landmarks detectors are trained on an on iBUG 300-W dataset and show an outstanding performance in
varying lighting conditions, facial expressions, or head orientation. The proposed method estimates the
facial landmark positions and extracts the ratio between horizontal and vertical distance between eye
contour – eye aspect ratio – for each video frame to examine the open and closed state of eyelids. To test
the robustness of the algorithm, a testing interface has been applied for obtaining the benchmark data in
tracking accuracy evaluation.

1. Introduction

As one of the most salient features of human face, the eyes play a crucial role in interpreting a
person’s intension and attention. Eye blinks are considered to be one of the most robust and
intrinsic properties of human face. Psychological research reported that eye blinks can be used
to interpret a person’s intention [2]. For example, we tend to blink faster when feeling excited
and bat our eyelids when speaking in public as well as when lying. Eye blink detection can be
utilized in various fields such as in face live detection to distinguish photo from real person, in
driver fatigue system to detect drivers’ fatigue state, or in disease detection to capture altered
blink rate, which may be an alert to some abnormal pathological cases [2]. Specifically, driver
fatigue is a significant factor in lots of car accidents, and development of techniques to detect
and prevent drowsiness at the wheel is a foremost challenge in the field of accident avoidance
system. Due to the hazard that drowsiness presents on the road, we need methods to detect
eye blinks to counteract the effects.

However, there are so many difficulties in eye blink estimation: eye patterns have large variation
in appearance due to various factors, such as size, shape, pose, rotation, facial movement
dynamics, the closed and open eyes, illumination conditions, or the occlusion by hairs. Given the
complexity of the task, many efforts have been devoted: some build a generic eye model based
on eye shapes, while others use template matching, where templates with open or closed eyes
are learned and a normalized correlation coefficient is computed to search the images for eyes.
However, these methods are sensitive to image resolution, illumination, or facial movement
dynamics in real time performance.

Recently, robust facial landmark detectors have been proposed to track most of characteristic
points on a human face. These detectors are trained on iBUG 300-W dataset and their precision
and sturdiness are evaluated to varying illumination, various facial expressions, and head
rotation [14]. Based on one of these facial landmark detectors, in this paper, we propose a
simple and efficient technique to detect eye blinks: a scalar quantity, namely EAR, is derived
from the eye landmark positions to reflect a level of eye openness or closeness by measuring
the ratio of the horizontal and vertical distance between eyelids, and the rapid distance ratio
changes in eyelids are considered as blinks [14]. Such eye blink detection algorithm is a coarse-
to-fine method: firstly, we detect and locate eyes position; secondly, eye contour is estimated
by 12 landmarks and therefore it can describe both open and closed eyes; thirdly, EAR is
calculated and used for determining the eye states based on whether the value is above or
below a certain threshold, and finally an interface is designed to test the robustness of the
system and to gather data to calculate the accuracy of the system.

This paper is structured as follows, after related eye blink detection works, proposed algorithm
to detect eye blinks are detailed in the 3rd section, testing results analysis is presented in 4th
section, and finally conclusion is given for future work.

2. Related Work

Many researches have been devoted to this work. For face detection, Haar feature-based
Cascade Classifier is used to identify the face region of the image in real time [18]. Camshift
algorithm is used to combine colors represented as Hue from HSV color model for face tracking
[5]. For eye detection, a cascade of classifiers based on Haar-like features is built by two training
datasets: positive and negative samples [1]. Adaptive Boost, a learning algorithm, is used to
build a strong classifier from weak classifier [10]. For eye tracking, Kalman filter algorithm uses
finite-difference method to calculate partial derivatives of nonlinear functions [9].

For eye blink detection, many methods are applied. Some use correlation coefficient to measure
the similarity between closed eye and open eye image: as someone closes eyes when blinking,
correlation coefficient will decrease [7]. Other approaches include optical flow to track eyelid
movement, in which method detection is based on matching SIFT (scale-invariant feature
transform) descriptors computed on GPU [11]. This method uses threshold frame difference
inside eye region to locate motion region, which will be used to calculate the optical flow. While
users blink, eyelids move up and down so as to trigger the motion in vertical direction. Later the
eyelid movements are estimated by normal flow and deterministic finite machine with three
states – steady state, open state and close state – instead of optical flow to calculate eye blink
characteristics [8]. Variance map specifies distribution of intensities from the mean value in a
video frame sequence; the intensity of pixels located in eye region changes during blink [13]. A
deformable model – Active Shape Model – is represented by several landmarks as the eye
contour shape; the model learns the appearance around each landmark and fits it in the actual
frame to obtain the eye shape [12]. Blinks are detected by the distance measurement between
upper and lower eyelid. Eyelid’s Status Detecting (ESD) Value calculation can also be used to
detect blinks: it increases the threshold until the resulting image has at least one black pixel
after applying median blur filtering, and the value is different when users open or close their
eyes [4].

3. Eye Blink Detection Algorithm

Blinking is a natural eye motion defined as the rapid closing and opening of eyelids. The
algorithm we apply consists of four steps, as shown in figure 1. The method first utilizes the
facial landmark detector included in the dlib library, which is an implementation of the One
Millisecond Face Alignment with an Ensemble of Regression Trees by Kazemi and Sullivan (2014)
[9], to obtain the face bounding box. Then, eyes and eyelid contours are localized and drawn
inside the bounding box in each video frame. Next, from the eye landmark coordinates detected,
eye aspect ratio (EAR) is derived to estimate the eye-opening state. Since each individual has a
little bit different patterns for blinks: some people will close and open their eyes in a more
frequent manner; some people will squeeze their eyes harder when blinking; and some will blink
in a longer duration, a certain threshold is defined and specified for each individual. This trial-
and-error experiment for threshold is achieved through a user-friendly testing interface, in
which the actual blinks calculated by user key inputs are compared with the blink counts
calculated by the algorithm.

 Figure 1: Algorithm Flow Diagram

3.1 Facial Landmark Detection

The pertained facial landmark detector encompassed in the ‘Dlib’ library is used to estimate the
location of 68 (x, y) coordinates that map the key facial features on a human’s face. This method
starts with a training set of labeled facial landmarks on an image by stating specific (x, y)
coordinates of regions surrounding each facial structure, and then estimate the probability on
distance between pairs of input pixels. Based on the training data, an ensemble of regression
trees are trained to estimate the facial landmark positions directly from the pixel intensities. The
result is a facial landmark detector that can be used to do real time facial features localization
with a higher level of performance [16].

Facial Landmark Detection

Eye Countour Localization

Eye Aspect Ration Calculation

Threshold for Classification

Testing for accuracy

https://www.semanticscholar.org/paper/One-millisecond-face-alignment-with-an-ensemble-of-Kazemi-Sullivan/1824b1ccace464ba275ccc86619feaa89018c0ad
https://www.semanticscholar.org/paper/One-millisecond-face-alignment-with-an-ensemble-of-Kazemi-Sullivan/1824b1ccace464ba275ccc86619feaa89018c0ad

Figure 2: 68 facial landmark coordinates from iBUG 300-W dataset

Figure 3: Facial landmark coordinates applied on human faces

3.2 Eye Contour Localization and EAR

Given the facial landmark detector included in the dlib library, 12 (x,y) coordinates are localized
in each video frame and connected together to show eye contour. Each eye is represented by
6(x, y) coordinates, starting from the left-corner of the eye and going clockwise around the rest
of the eye region, as shown in figure 3 [15]. As you can see, the distance between P1 and P4 is
the width of the eye, and the height can be calculated by the vertical distance between P2/P3
and P6/P5.

Figure 4: 6 Eye Contour landmarks

Based on the paper Real-Time Eye Blink Detection using Facial Landmarks by Tereza Soukupova
and Jan Cech [17], the relation between width and height can derived by an equation called eye
aspect ratio (EAR).

Figure 5: Eye Aspect Ratio equation

The numerator of this equation computes the distance between two pairs of vertical eye
landmarks and adds them together, while the denominator computes the distance between
horizontal eye landmarks and denominator is weighted by multiplying by 2, since there is only
one pair of horizontal points but two pairs of vertical points. The idea behind this equation is
that when eyes are open, the EAR is mostly constant but will drop dramatically close to zero
when eyes are closed. Before blinks take place, the eye aspect ratio should be approximately
constant and when blinks take place, the ratio will decrease dramatically and then increase
again to the constant value. This can indicate that a single blink has occurred. This logic can be
visualized in the figure 6. After computing EAR for both left and right eyes, we average the two
eye aspect ratios to achieve a better blink estimate, based on the assumption that both eyes are
blinked at the same time [15].

http://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf

Figure 6: Visualization of eye landmarks when eye is open & closed and EAR over time

After computing the EAR, we need to determine whether a blink is happening or not. Although
aspect ratio of open eye should have a small variance among individuals, each person has
different pattern of blinks and different size and shape of eyes. This means a pre-defined
threshold should be found for each individual: if the eye aspect ratio is below the threshold, we
increase the number of conservative frames to indicate a blink has taken place [15].

3.3 User Interface

Since each individual has various eyes blink patterns in terms of blink speed or blink duration, a
testing interface has been designed to gather data to measure the accuracy of the system.
Before starting video streams, we ask users to input their name and gender that will be stored in
a .csv file. When frame window shows, we start looping over each frame of the video stream to
detect faces and eyes and draw bounding box and eye contour. EAR value for each frame will be
shown on the upper-right corner of the window, as well as the default threshold value. Based on
the real time EAR value, users can press keys to adjust the threshold value: press “i” key to
increase the threshold and “d” key to decrease the threshold. For testing purpose, we will
record 3 to 5 different threshold values for each individual.

Figure 7: Interface before testing

The default value of ear threshold is defined as 0.28. To evaluate the accuracy, we will ask users
to blink for 30 times and then the blink prediction calculated by the system will be divided by
the actual 30 blinks to measure the accuracy percentage. The steps to get accuracy are as
follows. Users will press “s” key to start the test. After “s” key is pressed, the blink count will be
shown on the upper-left corner of the window. To record the actual blinks, users are asked to
press “a” key when they are blinking, and the actual blink value will be shown below the blink
count. A beep sound will be applied to notify users to stop blinking when 30 times of blinks has
reached. The actual blink and blink count calculated by the program will also be exported to
the .csv file. For analysis, the image of the users’ faces will also be captured when they press “s”
key. All the data, along with the width and length of the facial bounding box, the horizontal and
vertical distance of the eye and the accuracy, will be detailed in the .csv file for later analysis.

Figure 8: Interface after testing

Testing is conducted on a dataset consisting of 90 entries with different thresholds for every
individual for both male and female with various facial expressions, such as glasses wearing.
Each entry in the csv file has a relevant photo for the user captured by the program and saved
as .jpeg file. When testing, they are asked to look straight into the camera at close distance, at a
static position, not to either smile or half blink. Based the most suitable threshold for each
individual, we aim to calculate the average accuracy of the system and also based on the
measurements of each subject’s eye width and height as well as distance between two eyes and
also the features on their faces, we want to detect driver’s conditions while they are driving in
the future work.

However, during the testing, we have encountered some technical issues. We use keys to get
the actual blinks; however, keys responsiveness is based on systems, which is to say when
subjects press the key every time when they blink, the program cannot detect the keypress and
therefore doesn’t increase the actual blink counter. In this case, we have to retest again or
count manually and then change the actual_blink number in the .csv file.

4. Eye Blink Data Analysis

All the test results are exported to a .csv file. The format of the .csv file is shown as in figure 9.
The dataset is a matrix of consisting of 100 rows about each test case, and 18 columns specifying
the features of the test cases. The first two columns are the basic information about testing
users, name and gender, followed by the EAR thresholds. For every user, there are 3 to 5

different threshold values. The following columns are the blinks counted by the system, actual
blinks input by user key press, and the accuracy calculated by dividing the blinks count by actual
blinks. The following columns provide the measurements about the face and eyes. These
includes the face width and height, the horizontal distance between eyelids of left and right
eyes, and two vertical distances between eyelids of left and right eyes, followed by four
distances between left and right eye inner and outer corners, as shown in figure 10. The last
four measurements will be affected by the distance between the users and computer screen.
The closer the users are, the larger the measurements. Since we don’t specify the exact distance
at which the users are asked to sit from the computer screen, even for the same person, the
distances between their left and right eye corners are not exactly the same, but somewhat close.
Based on these dimensions, we can assume the approximate size of eye and face for each
person and make some interesting observations.

Figure 9: Output csv file

Figure 10: 4 Distances between left & right eyes

To measure the accuracy of the system, we select the test cases with highest accuracy rate for
each user, add them together and divided by the total number of users. The average accuracy is
85% (84.64%). There are 6 users including us who had the maximum accuracy of 95%. Very few
users had maximum accuracy as 46%. Explicitly, people with big and wide eyes are more likely to
achieve a higher accuracy as high as above 90% while people with narrow and small eyes are

observed to have relative lower accuracy, an average of around 50%. The EAR thresholds with
which every user achieved their highest blink accuracy ranges from 0.24 to 0.31. The farther the
person is from the system camera the lower the ear and the nearer the user is to the camera the
higher is the ear for the same user. The standard EAR threshold for both of us was 0.27/0.28.
Opposed to what we have expected, wearing eye glasses don’t have much of an effect on the
performance of the system. That is to say, people with eye glasses can also get high blink
accuracy as long as the right EAR is defined.

5. Technical Issues

However, the algorithm used does not attain higher precision under some scenarios. For
example, it cannot detect involuntary short & fast blinks or counts only once when several blinks
occur, or counts several blinks when users blink only once or don't blink, or counts when users
just try to open their eyes wider. This may be due to noise in a video stream, or random
fluctuations of eye landmarks, or false detection for eyes with deep double-fold eyelids. To put
simply, a simple threshold on the EAR could produce few false-positive detection, where a blink
is reported while in reality the person doesn’t blink. The key press is non responsive on certain
system, is system specific and not universal. Camera Latency and system processor affect the
accuracy and robustness of the algorithm too.

6. Conclusions

An efficient method for detection of eye blinks in live video frames has been presented in this
paper. Using facial landmark detector, eye region features are automatically localized and the
EAR, the ratio between vertical and horizontal distance between eyelids, is calculated to
estimate the eyes’ open and closed states, therefore indicating blinks. The performance of the
algorithm is evaluated by a testing interface where threshold can be adjusted by each individual
to find the best value for them. The EAR thresholds with which every user achieved their highest
blink accuracy ranges from 0.24 to 0.31. The average accuracy of the interface was around 85%
across 20 users. Fast core and higher quality pixel web camera can increase the accuracy and
should capture each frame without much latency. Data collected under normal scenarios are
used to evaluate the blink detection accuracy, and benchmark data can be used for future
training. The data shows that the proposed algorithm is able to accurately track eye locations,
detect normal long blinks.

7. Future Work

In the future work, we intend to log the EAR values before and after the frame, when the most
closed state for eye is detected and to train the output of the data to find a universal EAR,
therefore increasing the accuracy of the system irrespective of the shape or size of the eyes. We
will also try to test the algorithm in more varied environments to test the system’s sensitivity.
Based on the facial landmark features, we will try to detect and classify the conditions of the
drivers while they are driving, such as drowsiness/sleepiness state, angry or excited emotional
states, and evolve the system into detection and alert notification system for various drivers’
conditions. The interface can be advanced into Real Time Emotion Adaptive Driving system [20]
to monitor drivers’ senses and change the environmental factors like increasing/decreasing
temperature or changing the songs among the many other features with advanced settings for
better driving experience.

Reference

[1] Adolf, F., “How-to build a cascade of boosted classifiers based on Haar-like features,”
OpenCV’s Rapid Object Detection, 2003.
[2] Al-Gawwam, S., Benaissa, M. Robust Eye Blink Detection Based on Eye Landmarks and
Savitzky-Golay Filtering, 2018.
[3] Al-Gawwam, S., Benaissa, M. Eye Blink Detection Using Facial Features Tracker,
[4] Ayudhaya, C., Srinark, T. A method for a real time eye blink detection and its applications.
The 6th International Joint Conference on Computer Science and Software Engineering (JCSSE),
2009.
[5] Bradski, G. R., “Computer Video Face Tracking for Use in a Perceptual User Interface,” Intel
Technology J., Q. 2, 1998.
[6] Devahasdin, C., Ayudhya, N., Srinark, T. A Method for Real-Time Eye Blink Detection and Its
Application, 2018.
[7] Grauman, K., Betke, M., Gips, J., Bradski, G.: Communication via Eye Blinks - Detection and
Duration Analysis in Real Time. Computer Vision and Pattern Recognition, 2001.
[8] Heishman, R., Duric, Z.: Using Image Flow to Detect Eye Blinks in Color Videos. Applications
of Computer Vision, 2007.
[9] Kazemi, V., & Sullivan, J. (2014). One Millisecond Face Alignment with an Ensemble of
Regression Trees. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1867-1874.
[10] Kuo, P. and Hannah, J., “An Improved Eye Feature Extraction Algorithm Based on
Deformable Templates,” Proc. of the IEEE Int. Conf. on Image Processing (ICIP), Genoa, Italy,
September 11-14, 2005.
[11] Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N., Laurendeau, D. Real-time Eye Blink
Detection with GPU-based SIFT Tracking. Proceedings of the Fourth Canadian Conference on
Computer and Robot Vision, 2007.
[12] Liting, W., Xiaoqing, D., Changsong, L., Wang, K.: Eye Blink Detection Based on Eye Contour
extraction. Image Processing: Algorithms and Systems, SPIE Electronics Imaging, 2009.
[13] Morris, T., Blenkhorn, P., Zaidi, F.: Blink Detection for Real-time Eye Tracking. J. Netw.
Comput, 2002.
[14] Pimplaskar, D., Nagmode, M., Borkar, A. Real Time Eye Blinking Detection and Tracking
Using Opencv. 3. 1780-1787, 2013.
[15] Rosebrock, A. Eye Blink Detection with OpenCV, Python, and Dlib, 2017.
https://www.pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/
[16] Rosebrock, A. Facial Landmarks with Dlib, OpenCV, and Python, 2017.
https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/
[17] Soukupová, T., & Cech, J. Real-Time Eye Blink Detection using Facial Landmarks, 2016.
[18] Viola, P. and Jones, M., “Rapid Object Detection using a Boosted Cascade of Simple
Features,” Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR), Hawaii, USA,
December 9-14, 2001, Vol. 1.
[19] Zhang, J. and Zhang, Z., “Application of a Strong Tracking Finite-Difference Extended Kalman
Filter to Eye Tracking,” Proc. of the Int. Conf. on Intelligent Computing (ICIC), Kunming, China,
August 16-19, 2006.
[20] https://www.autonomousvehicleinternational.com/news/adas/kia-to-unveil-future-
autonomous-car-that-can-read-a-passengers-emotions.html

https://www.pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/
https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/

