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Abstract 
We developed an algorithm for detecting a hierarchy of brain tumor structures in 

multimodal Magnetic Resonance (MR) Images. A subtask of this algorithm is to output a 
predicted remaining lifespan for the patient. We propose the use of a U-net-like neural 
network architecture along with the use of heavy data augmentation to solve this problem. 
The network was trained on powerful Tesla V100 GPU on the cloud and achieved a 0.584 
dice loss on the test set. 
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1. Introduction 
 All tumors arising from the supportive tissue of the brain are considered Gliomas. 
Gliomas account for 80 percent of all malignant brain tumors. 16,000 new cases of high-
grade gliomas (HGG) are expected to be diagnosed in the United States in 2018. The one-, 
five- and ten-year survival rates for patients with HGG is 37.2 percent, 5.1 percent, and 2.6 
percent respectively. HGG is one of the most lethal cancers. Gliomas are the most common 
primary brain malignancies. They contain various heterogeneous histological sub-regions, 
i.e. peritumoral edema, necrotic core, enhancing and non-enhancing tumor core. This 
heterogeneity of gliomas is also portrayed in their imaging phenotype as their sub-regions 
are described by varying intensity profiles disseminated across multimodal MRI scans, 
reflecting varying tumor biological properties. Due to this highly heterogeneous 
appearance and shape, segmentation of brain tumors in multimodal MRI scans is one of the 
most challenging tasks in medical image analysis. [3] 
 
2. Input Dataset 

The dataset described in this paper was released by the Medical Image Computing and 
Computer Assisted Interventions Conference (MICCAI) 2017 [1]. The dataset includes 
multi-institutional clinically acquired MR Images of 285 patients with glioblastoma 
(GBM/HGG) and lower grade glioma (LGG), with pathologically confirmed 
diagnosis. These multimodal scans describe a) native (T1) and b) post-contrast T1-
weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion 
Recovery (FLAIR) volumes and were acquired with different clinical protocols and 
various scanners from multiple (n=19) institutions. The dataset also includes some 
metadata on 168 of the patients. This metadata includes the age of the patient and the 
amount of days left the patient had to live, hereafter referred to as the survival rate. 
[5,6,7,8] 
 
3. Data Exploration 
 
3.1. Metadata 



 

 

In order to get better acquainted with the metadata, a few visualizations have been 
developed to analyze the patient age and patient survival. In Figure 1, we analyze the Kernel 
Density Estimation as well as a Histogram of the patient age and patient survival 
distributions. 

 
 

Figure 1. Patient Age and Patient Survival distributions 

In Figure 2, we generate a scatterplot with the patient age and patient survival. 
We demonstrate that there is a -0.3722 correlation between these data points. This 
negative correlation suggests that higher age indicates lower survival rates. 
 

 
Figure 2. Patient Age / Patient Survival Regression Plot 

Although, as we can see in Figure 3, if we generate a Kernel Density Estimation 
to observe the bivariate distribution of the patient age and patient survival, we notice that 
most of our data consists of patients that are higher in age and lower in survival rate. This 
indicates that our correlation noted earlier may be invalid. To develop a model to estimate 
the survival rate on new patients we will have to incorporate MRI data in the prediction. 



 

 

 
Figure 3. Patient Age and Survival Kernel Density Estimation 

3.2. Magnetic Resonance Images 

Each training example contains MR images of 4 different modalities and a labeled 
segmentation mask. The modalities include T1, T1ce, T2, and FLAIR. An example of 
this can be seen in Figure 4. 

 

Figure 4. Example of MR Images and Segmentation Map 

 
 
4. Method 
 
4.1. Preprocessing 

We standardize the pixel values by calculating the z-score. The standardization can be 
described as follows:  

𝑍 = 	
𝑋	 − 	𝜇
𝜎

 



 

 

To make up for the small dataset, we augment the data 9 times for every training example. 
This increased the training set by an order of magnitude. We augment the data by 
performing random flipping on the vertical axis, elastic transformations, rotations, shifting, 
shearing and zooming. An example of this can be seen in figure 5. 

Figure 5. Augmentation Example 
 

 
4.3. Problem Formulation 

The task of brain tumor segmentation is an image segmentation problem. We use the 
Jaccard Dice Coefficient to calculate the loss in the network. The Jaccard Dice Coefficient 
can be described as follows: 

𝑑𝑖𝑐𝑒 = 	
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 
where TP, FP and FN represent true positive, false positive and false negative 

respectively. 
 
4.4. Neural Network Architecture 

We propose the use of a U-Net-like architecture (see Figure 5) to segment the brain 
tumors from the MR Images [2]. This network uses an encoder-decoder architecture. The 
encoder uses convolution operations to learn a latent representation which is then fed into 
the decoder. The decoder runs convolution-transpose operations to transform the latent 
representation into a predicted segmentation map. 

 
Figure 6. Model Architecture 

4.5. Training 



 

 

We train the network for 12 hours (1 training epoch) on a Tesla V100 GPU. We trained 
two models simultaneously using the Adam optimization method [4]. One model was 
trained with the standard learning rate of 0.001 and the other was trained with a non-
standard learning rate of 0.0001. We used a mini-batch size of 32 for both models.  

We split the data with a 50-25-25 Train-Validation-Test split (before augmentation). 
This results in a training set size of 22,010 (220,100 with augmentation), a validation set of 
10,540, and a test set of 10,540. Augmentation was only performed on training data, not on 
validation or testing data. HGG and LGG examples were both evenly split amongst the 
datasets.  

The model trained with the standard Adam learning rate achieved a training loss of 0.442 
and validation loss of 0.641 indicating slight overfitting to the training set. The model with 
the non-standard Adam learning rate achieved a training loss of 0.611 and a validation loss 
of 0.58. The non-standard rate appears to generalize better to unseen data, so the evaluation 
will be on that model. 
 
5. Results  

The model achieved a 0.5842 which indicates ~41% intersection over union. 
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