
 Using an Evolution Strategy for a University Timetabling System with
a Web Based Interface to Gather Real Student Data

Thomas B George

GE GAPS Suite 400
25925 Telegraph Road

Southfield, Michigan 48034 USA

Vitaliy Opalikhin
Automated Media Incorporated

12171 Beech Daly Road
Redford, Michigan 48239 USA

Chan-Jin Chung
Math & Computer Science Dept.

Lawrence Technological University
Southfield, MI 48075

Abstract

Determining the best, or near best timetable of
lecture/courses for a university department,
which optimizes enrollment, is a challenging
problem. Our department is further challenged
by restrictions on the availability of faculty,
since adjunct faculty members who have other
jobs teach 80% of all the classes offered by the
department. Described herein is a platform
developed to obtain both actual student
generated data of course preferences and
availability as well as department scheduling
restrictions via a web interface. The web
interface is essential, because our timetabling
system incorporates students' preference data to
generate schedule minimizing time conflicts. The
system is coupled to an optimizer using an
Evolution Strategy to generate the optimal or
near optimal schedule of classes. In addition, the
optimizer permits manipulation of initial
constraints such as population size, the initial
mutation rate, the step rule for varying the
mutation rate, and the crossover point.

1 INTRODUCTION
In this paper we implement an evolutionary strategy,
using actual student survey input, obtained using a web
based interface, to solve university curriculum timetable
problems. The web interface is essential, because our
timetabling system incorporates students' preference data
to generate schedule minimizing time conflicts. If
successful, it is our ultimate goal to establish a working
system that can be used at our university and also be
readily adapted for use by other university departments.
Generating the best timetable consists of scheduling
courses into appropriate timeslots and assigning resources
such as instructors, classrooms, projection facilities, etc.
In addition, consideration should be given to maximizing
enrollment while ensuring students progress towards

completion of their degree requirements. At our
University, this requires consideration of scheduling
courses both during the day for full time students and also
in the evening for working students. By optimizing
within these constraints, the university can provide the
most economical and efficient operation while satisfying
student demands on the curriculum, a critical criterion in
this competitive day.
Because this problem incorporates a search space that is
too large to explore exhaustively, an evolutionary
algorithm is the natural choice. In fact, the class of
timetabling problems has been intensively studied and
known to be NP-hard (Even, Itai and Shamir, 1976).

1.1 THE TIMETABLING PROBLEM
There are many versions of the timetabling problem

and they usually incorporate many nontrivial constraints
of various kinds. The Timetabling problem here for our
university can be described as follows (de Werra , 1985):

• There are a finite set of

classes, }...,,,{ 21 CcccC = ,

time slots }...,,,{ 21 Tttt=T ,

students }...,,,{ 21 SsssS = ,

professors }...,,,{ 21 PpppP =

• We have a function which maps each
course to the professor that teaches it.

PCt a:

• the time that the kpxdkx kiiki ≤≤≤≤ ,, 1,1, th teaching
period of course ci is given, p the number of possible
teaching periods of the university.

• A solution to this problem is any assignment to the
variable xi, k such that the following constraints are
respected:

A professor cannot give more than one lecture at a
time

∑ ∀≤==
ki

inki nmcppmx
,

, ,,1)](][[

Similarily, a student cannot attend more than one
lecture at a time
∑ ∀≤==

ki
inki nmcssmx

,
, ,,1)](][[

• A number of soft constraints were not considered
with this implementation such as the fitness of a one
class room over another due to characteristics such
as AV equipment, stadium seating, size, etc. These
characteristics were built into the object oriented
model used in the optimizer but, were omitted at this
stage to facilitate analysis of the optimizer’s
behavior.

Our current objective function is to find a timetable that
maximizes the number of student survey data s, which
matches to the tuple in the timetable generated, while
satisfying various constraints (predicted enrollment). In
other words, by using the survey data gathered, we are
trying to minimize time conflicts when students register
classes. This will be a win-win strategy both for students
and the University, because for students there will be high
chance to take classes they plan to take, and the
University can maximize number of students enrolled.

We can further divide constraints into hard constraints
and soft constraints. Soft constraints are those that would
allow us to assign values to generated timetables that
allow us to rank them in order of preference, even though
the maximized student enrollment is equal for all
timetables being considered. An example might be noting
that, given two timetables T1 and T2, T1 provides equal
total enrollment to that of T2 but in more classes (average
enrollment per class is lower). The university may choose
to give T2 preference as it provides more efficient use of
University Resources, or policy may determine that T1 is
preferred as it improves the Faculty to Student ratio. At
this stage, we do consider some soft constraints in ranking
timetables during the “Survival of the Fittest Function”
with one of the tested optimizers.

Hard constraints are those constraints that ensure that a
given timetable is valid. The following hard constraints
are implemented in our project:

• A Single Class may not be scheduled concurrently.
In other words, if a Discrete Math Class must meet
twice a week, the two sessions may not occur
simultaneously. The total number of classes in
session at any given moment must not exceed the
total number of rooms available.

A single student may not attend two or more classes that
occupy the same or overlapping time slots.

1.2 The Use of Real Student Constraint Data
Since selection of the best population size, mutation rate,
mutation rate adaptive rule and crossover point remains
more of an art than a science, we elected to develop a
platform that will accept real course selection data from
the student body, before a schedule is published, in order
to generate the best schedule possible. Then, using both
generated and real life data, the algorithm can be run
repeatedly while varying different parameters to see
which values give the best result most consistently.
The Math & Computer Science Department is expected to
run the final version of platform over the course of 1-2
weeks, generating several solutions, from which the best
may be selected. Thus, we are searching for the
parameters which give the best peak performance over a
small sample as opposed to the average performance
(Eiben and Jelasity, 2002).

2 UNIVERSITY MCS CURRICULUM
Our University Math & Computer Science Department
Curriculum consists of over 90 graduate and
undergraduate courses, any combination of which may be
offered in a given a semester. Required or core courses
often must be offered both during the day and during the
evening to accommodate the student body which consists
of both full time students and working professionals.
A survey conducted, during the Fall of 2002, determined
that 38% of our student body is employed full time, 33%
part time and 84% of our student body lives off campus.
With such a large percentage of working students, the
need to schedule courses efficiently in the evenings
becomes more pronounced.
Furthermore, we have a potentially severe constraint in
that our department only has 14 lecture rooms available
for use. While classes are sometimes scheduled in other
department’s facilities, this practice is undesirable due to
the need for computer resources provided within the
lecture rooms and short commuting distance between
rooms.

3 WEB-BASED INTERFACE FOR
COLLECTING INPUT DATA

The main idea of collecting data was to provide the
students with the list of classes available for next semester
and the times when the classes can be offered. Based on
given options the students can choose the classes they are
interested in and the most suitable time for them. After
collecting the students’ responses the program will create
the list of classes that will possibly be offered next
semester and survey data that later can be used to generate
the final schedule. It will allow maximum number of
students to attend offered classes.
Implementing a university timetabling system to schedule
classes is a common timetabling problem (Erben and
Keppler, 1995), (Paechter, Rankin, Cumming and

Fogarty, 1998), (Burke, Elliman and Weare, 1994),
(Wong, Côté and Gely, 2002), (Foulds and Johnson,
2002), (Müller and Barták , 2001).
 For our system the web based University Schedule
Wizard (USW) was created. Web based applications in
general are more convenient for users, for example,
current or prospective students can complete survey from
home without going on campus. USW was developed
using JSP and Java Servlet for user interface, MySQL
database and JRun Linux based web server. In order to
provide rich graphic-user interface Javascript and
DHTML technology were used. Also, the users can select
courses by department, because list of all courses offered
by the University can be huge.
The whole process of collecting student’s preferences
would take just a few minutes. The system was used to
collect real data and had showed satisfactory results.
The process of collecting data through USW can be
divided into two major parts: LTU Student Part and
Administrator Part.

3.1 ADMINISTRATOR PART
The administrator part provides authorization based on
login and password. Administrator part (Fig. 1) is used to
maintain data that is needed to create the initial schedule
file (initsch.txt). The initial schedule data includes list of
classes, class times, semester information and number of
available rooms. Using this part an administrator can
generate and print output files that are used by a schedule
generator.

Fig 1. View of the Interface for the Administrator’s Part.
The Administrator can add, modify or delete courses,
indicates which times are available for scheduling, and
generates output summarizing the curriculum and student
data information.
University Schedule Wizard (USW) uses timeslots pre-
built by administrator for representing class time. First
letter in timeslot represents day of the week and second

one represents part of the day. For example: MM -
Monday Morning, RE – Thursday Evening, FA – Friday
Afternoon. USW has five different types of timeslots that
are depended upon the number of times per week the class
is scheduled. For example: one class is scheduled for
Monday Afternoon (MA) and another class - Tuesday
Evening and Thursday Evening (TERE). USW
implements timeslot maintenance for classes that are
scheduled up to five times per week.
After administrator builds timeslots, administrator goes to
maintenance part where he can add, modify or delete
courses. For each course administrator provides course
number, description and timeslots. The timeslots selected
from the available pre-built timeslots are based on
provided instructor’s preferences. A course can be
offered within one of five groups of timeslots (1 – 5 times
per week). The timeslots from different groups cannot be
mixed for same course.
At the present time system is being updated by exporting
the list of courses from the different sources.
The administrator is also responsible for entering the
number of rooms.
After administrator builds information for all the courses
students can start submitting their preferences.

3.2 STUDENT PART
Student part provides authorization based on student id.
Student part (Fig. 2) maintains a student’s preferences
that will be used to generate the student survey file
(stusurvey.txt). Those preferences include list of classes
the students want to take, class times and semester
information.

Fig 2. View of the Interface for the Student Part.

Students can add, modify or delete list of courses in
which they wish to enroll. They can also indicate which
times they are available to attend classes.
The students are not required keying in any information
manually. All they need to do is to select a semester, class
and timeslots from the timeslots provided by
administrator for this class.
This simplicity allows user to avoid errors, to save a lot of
time and also helps building reliable data. Student can
select one or more classes or timeslots for each class.
Students can also change his/her selections at any time.
They modifications can be made until the administrator
generates the final schedule.
USW also supports ‘*’ that means any available timeslot
for current class.

3.3 OUTPUT FORMAT
Data collected by USW is formatted to produce output of
two text files: ‘initsch’ and ‘stusurvey’ (Fig. 3). The files
then are used by the schedule generator to create the
schedule of classes.

Fig. 3. View of text tile output.

This data is available for administrator review and is used
by the built-in optimizer to generate schedules. The data
is also available for export, for use by optimizer 2.

4 OPTIMIZER IMPLEMENTATION
Before we can present the results generated by the ES
Optimizer, it is necessary to describe, in detail, the
implementations. The ES Optimizer implements an
algorithm based on a variation of ES(N+N) where the N is
the selected population size and the mutation rate and
adaptive mutation rate can be selected in advance by the
user. The current implementation reads in the
initialization data from the parameter selection on the
main GUI (Fig. 4) and also from the two data input text
files (Fig. 3). From the two text files and user selections,
the optimizer initializes the following:

• The adaptive rate (based on the 1/5th rule).

• The initial Mutation Rate.

• The era (number of generations that pass before the
1/5 rule is evaluated.

• The Population Size (initial and maximum allowed to
survive each generation).

• The crossover rate (% of a child’s “genetic material”
that is derived from the more fit of two parents.

• Generate N (10 is the default) Schedules to make up
the population. Schedules contain every possible
course.

• Each course in a schedule is randomly assigned a
"legal" timeslot.

The fitness characteristics for each schedule are
determined based on total enrollment, student preferences
fulfilled (students can only attend one class during a given
period), and average enrollment per course.

---initsch.txt---
ME TE WE MEWE TERE WEFE
14
MCS5013 ME TE WE
MCS5043 ME TE WE
MCS5103 ME TE WE
MCS5203 ME TE WE
MCS5303 MEWE TERE WEFE
MCS7993 TE

---stusurvey.txt---
AS000000647 MCS5013 *
CC000000708 MCS5013 TE
CC000000708 MCS5303 *
IT000001301 MCS5103 WE
IT000001301 MCS5203 *
IT000001301 MCS7993 ME

1st line displays all available timeslots
2nd line displays available rooms

All other lines display possible classes to
schedule and available timeslots.

All lines display student id, class and time
preferences.
‘*’ indicates the student is available to take

this class any time (no constraint).

Fig. 4. View of the GUI Interface for the ES Optimizer.
This GUI can be used to set the adaptive function, base
mutation rate, era size, crossover rate and population size.

4.1 THE EVOLUTIONARY LOOP
The Individual
Each individual in the population consists of a complete
schedule. Courses scheduled illegally (violating any of
the basic constraints) are marked cancelled. Thus an
individuals simplest representation consists of a list of
courses with the scheduled weekly meeting times
appended.

Crossover
1. Allow each individual to mate with another. Mates

are currently randomly selected with the following
conditions:

• Each individual is guaranteed to mate at least
once and generate one child.

• Schedules cannot mate with themselves.

2. Generate offspring. For each mated pair, the parent
with the best fitness rating contributes X% (50%
default) of scheduled courses, selected randomly. The
second parent contributes the remaining courses.
Thus every child contains all possible courses.

Note that a single crossover point is NOT selected.
Genes are selected randomly from the first parent
until the selected contribution percentage is fulfilled.
This should result in more degrees of freedom in
traveling the search space. Order of classes within
each individual (schedule) is arbitrary and should
have no bearing on the problem or solution.

Mutation:
1. All of the children are subject to mutation (parents

are not). Each course (gene) in a child has a
(Mutation Rate) % chance of mutation. (Provision of
a switch to allow mutation of parents may enhance
the algorithm’s ability to locate local maxima.)

2. If mutated, a new legal set of class times is randomly
selected from the pool and assigned.

Enrollment (for each child):
1. Enrollment for each course within a child schedule is

determined based on the student survey information.
Students are not allowed to enroll twice in the same
course or to enroll in a course that does not fit their
availabile time constraints. They schedule all courses
in order of decreasing preference until either all
selections have been evaluated or their maximum
enrollment has been reached.

2. The courses are sorted in order of decreasing
enrollment.

3. Courses are assigned rooms (professor limit is
equally valid) for each period scheduled in order of
decreasing enrollment. If no rooms are available, that
course is marked cancelled.

4. Students re-enroll in the courses that are not
cancelled to determine the final enrollment

Note: it is possible that enrollment would be better
with another selection of course cancellations, but the
student preferences would have been ignored in that
case).

5. A count of preference violations and determination of
average enrollment per class is now recorded in the
schedule object for future comparison purposes.

Survival of the Fittest
1. Duplicate schedules are eliminated from the

population.

2. Schedules are now sorted in order of decreasing
fitness (enrollment).

3. The top N (10) schedules survive (If current
population is less than N, new members are
generated).

4. If the best schedule is better than those from previous
generations, an "Improved" Counter is Incremented
and the best schedule is saved.

5. A generation counter is incremented.

6. If the generation is a multiple of the Era or Window
Size:

• The mutation rate /= OneFifthRule (1.2 is the
default) if more than 1 of 5 generations have
shown improvement.

• The mutation rate *= OneFifthRule (1.2 is the
default) if fewer than 1 of 5 generations have
shown improvement. (Mutation rate is not
permitted to exceed 100%)

Loop Decision:

If the population has not improved for an arbitrary
number of generations (Era + 50 currently), then the loop
exits. Otherwise it continues. The optimizer should run
enough generations to ensure that evolution towards a
better solution is unlikely.

EXIT COMPUTATION:

At this point, the best schedule (Fig. 4) can be viewed on
screen or saved as a text file for later analysis. Data to
specific to each generation (mutation rate, best schedule
enrollment, etc.) are also recorded to a text file (Fig. 5) for
analysis.

Fig.5. Sample Portion Of The Output Of A Schedule

Fig. 6. Sample Output Of Data During The ES Process
For Graphing And Statistical Analysis.

5 THE TEST DATA SETS AND TEST
SUITES

We asked the Department Chair for the data to populate
the “initsch.txt” file. He selected available time slots for
each class, considering the instructors’ preferences and
availability. This is very important since adjunct faculty
members who have other jobs teach 80% of all the classes
offered by the department. Thus there are severe
restrictions on what times a course may be offered.

In order to capture real world data, we requested all
students (undergraduate and graduate) majoring in a math
or computer science discipline to participate by logging
into the web-based interface to select their courses as if
they were registering. 69 courses listed in our published
Spring 2003 Schedule were available for selection. The
students provided their personal time constraints but were
not told of any restraints for the classes.
We achieved participation of 51 students, which is
approximately 20% of the total number of students
available. Each student selected a mean of 2.6 courses (σ
= 1.4) with a maximum selection of 6 courses. We used
this data and ran both optimizers five times each with
population sizes of 1, 3 and 10, using the following fixed
parameters:
Mutation Rate = 5%
Crossover (Optimizer 2) = 50
Era (Optimizer 2) = 50

Fig. 7. Comparison Of Convergence Using 4 Different
Population Sizes

6 CONCLUSIONS
As you can see from Figure 7, the optimizer converged
quite rapidly. We also found that the data generated was
very consistent. While the above figure represents the
best of 5 runs for each of population sizes 1, 3, 10 and
100 respectively, additional runs at the same population
size failed to yield better peak results. In other words, a
separate trial running 20 more runs on a population size of
10 failed to find a solution with enrollment >= to 60. This

is in contrast to multiple runs with population sizes of 100
in which no result provided an enrollment of less than 70.

This leads to the supposition that the trend is to find better
solutions with increasing population size. However,
additional runs with population sizes in excess of 100
failed to yield better results and additional runs with
population sizes of 50 rendered near identical results. So,
it appears that with the constraints or our data set, the
optimizer is able to consistently find the near best solution
with a population size of 50 or larger.
Knowing that courses had available a minimum of 5
allowed time slots and a maximum of 10 allowed time
slots , the total search space encompasses more than 569
possible combinations. Even allowing for restrictions that
prevent more than 14 classes being scheduled in an
overlapping time period (14 rooms) this still
conservatively yields 514 or approximately 6 billion
combinations as a bottom limit. Clearly a population size
of 50 << than the total search space and it is unlikely that
we are exhaustively searching the set of all solutions.
In conclusion, this application of an evolution strategy for
a university timetabling problem appears to be quite
successful and we are ready to implement it to generate
actual schedules for future terms. It is our hope that this
system can also be adapted for use at other universities
and for use in similar problems such as scheduling
conferences, reducing the number of conflicts preventing
attendees from attending conflicting presentations.

References
Erben, W., Keppler, J.: A Genetic Algorithm Solving a
Weekly Course-Timetabling Problem (1995). Proceedings
of the First International Conference on the Practice and
Theory of Automated Timetabling (ICPTAT '95)
http://citeseer.nj.nec.com/erben95genetic.html

Paechter, B., Rankin, R.C., Cumming, A., Fogarty T.C.:
Timetabling the Classes of an Entire University with an
Evolutionary Algorithm. Parallel Problem Solving From
Nature --- PPSN V
http://citeseer.nj.nec.com/paechter98timeta bling.html

Burke, E., Elliman, D., Weare, R.: A Genetic Algorithm
Based University Timetabling System (1994).
Proceedings of the 2nd East-West International
Conference on Computer Technologies in Education
(Crimea, Ukraine, 19th-23rd Sept 1994).
http://www.asap.cs.nott.ac.uk/publications/pdf/crimea94.p
df

Wong, T., Côté, P., Gely P.: Final Exam Timetabling: A
Practical Approach(2002).
http://citeseer.nj.nec.com/544465.html

Foulds, L.R., Johnson, D.G.: A Decision Support System
Improves Course Timetabling at the University of
Waikato. 37th Annual ORSNZ Conference (2002).
http://www.esc.auckland.ac.nz/Organisations/ORSNZ/con
f37/Papers/Foulds.pdf

http://citeseer.nj.nec.com/erben95genetic.html
http://citeseer.nj.nec.com/paechter98timetabling.html
http://www.asap.cs.nott.ac.uk/publications/pdf/crimea94.pdf
http://www.asap.cs.nott.ac.uk/publications/pdf/crimea94.pdf
http://citeseer.nj.nec.com/544465.html
http://www.esc.auckland.ac.nz/Organisations/ORSNZ/conf37/Papers/Foulds.pdf
http://www.esc.auckland.ac.nz/Organisations/ORSNZ/conf37/Papers/Foulds.pdf

Müller, T., Barták R.: Interactive Timetabling(2001).
http://arxiv.org/ftp/cs/papers/0109/0109022.pdf
Ross, P. Corne, D. Fang, H.: Successful Lecture
Timetabling with Evolutionary Algorithms. Applied
Genetic and other Evolutionary Algorithms: Proceedings
of the {ECAI}'94 Workshop

Burke, E. Elliman, D., Weare, R.: Specialised
Recombinative Operators for Timetabling Problems.
Lecture Notes in Computer Science (1995)

Goltz, H., Matzke, D.: University Timetabling Using
Constraint Logic Programming. Lecture Notes in
Computer Science – Volume 1551, 1999

Woods, D., Trenaman, A.: Simultaneous Satisfaction of
Hard and Soft Timetable Constraints for a University
Department Using Evolutionary Timetabling. Artificial
Intelligence and Cognitive Science (AIC1999)

Zervoudakis, K., Stamatopoulos, P.: A Generic Object-
Oriented Constraint Based model for University Course
Timetabling. Lecture Notes in Computer Science Volume
2079 (2001)

de Werra, D.: An Introduction to Timetabling. European
Journal of Operational Research, 19:151-162, 1985

Even, S., Itai, A., Shamir, A.: On the Complexity of
Timetable and Multicommodity Flow Problems. SIAM
Journal of Computing. Vol. 5. No. 4. (1976) 691-703

Eiben, A.E., Jelasity, M.: A Critical Note on Experimental
Research Methodology in EC. Institute of Electrical and
Electronics Engineers 2002. 0-7803-7282-4/02

Walker, J.: RandomX Library for Java. The HotBits
Genuine Random Number Source. (1996)
http://www.fourmilab.ch/hotbits/

Chan, C., Gooi, H., Lim, M.: A Co-evolutionary
Algorithm approach to a University Timetable System.
Institute of Electrical and Electronics Engineers 2002. 0-
7803-7282-4/02

Srinivasan, D., Seow, T., Zu, J.: Automated Time Table
Generation Using Multiple Context Reasoning for
University Modules. Institute of Electrical and Electronics
Engineers 2002. 0-7803-7282-4/02

Michalewicz, Z., Dasgupta, D., Le Riche, R., Schoenauer,
M.: Evolutionary Algorithms for Constrained Engineering
Problems.

George, T, Chung, C.: Applying Evolution Strategies to a
University Timetabling System. In 2002 Genetic and
Evolutionary Computation Conference: Late-Breaking
Papers (2002) 179-184
Negnevistsky, M.: Artificial Intelligence. Pearson
Education Limited (2002) 217-243

http://arxiv.org/ftp/cs/papers/0109/0109022.pdf
http://www.fourmilab.ch/hotbits/

	INTRODUCTION
	THE TIMETABLING PROBLEM

	UNIVERSITY MCS CURRICULUM
	WEB-BASED INTERFACE FOR COLLECTING INPUT DATA
	ADMINISTRATOR PART
	STUDENT PART
	OUTPUT FORMAT

	OPTIMIZER IMPLEMENTATION
	THE EVOLUTIONARY LOOP

	THE TEST DATA SETS AND TEST SUITES
	CONCLUSIONS
	
	References

