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Abstract 
 
 
Determining the best, or near best timetable of 
lecture/courses for a university department, 
which optimizes enrollment, is a challenging 
problem.  Our department is further challenged 
by restrictions on the availability of faculty, 
since adjunct faculty members who have other 
jobs teach 80% of all the classes offered by the 
department.  Described herein is a platform 
developed to obtain both actual student 
generated data of course preferences and 
availability as well as department scheduling 
restrictions via a web interface.  The web 
interface is essential, because our timetabling 
system incorporates students' preference data to 
generate schedule minimizing time conflicts. The 
system is coupled to an optimizer using an 
Evolution Strategy to generate the optimal or 
near optimal schedule of classes.  In addition, the 
optimizer permits manipulation of initial 
constraints such as population size, the initial 
mutation rate, the step rule for varying the 
mutation rate, and the crossover point.  

1 INTRODUCTION 
In this paper we implement an evolutionary strategy, 
using actual student survey input, obtained using a web 
based interface, to solve university curriculum timetable 
problems.  The web interface is essential, because our 
timetabling system incorporates students' preference data 
to generate schedule minimizing time conflicts. If 
successful, it is our ultimate goal to establish a working 
system that can be used at our university and also be 
readily adapted for use by other university departments. 
Generating the best timetable consists of scheduling 
courses into appropriate timeslots and assigning resources 
such as instructors, classrooms, projection facilities, etc.  
In addition, consideration should be given to maximizing 
enrollment while ensuring students progress towards 

completion of their degree requirements.  At our 
University, this requires consideration of scheduling 
courses both during the day for full time students and also 
in the evening for working students.  By optimizing 
within these constraints, the university can provide the 
most economical and efficient operation while satisfying 
student demands on the curriculum, a critical criterion in 
this competitive day. 
Because this problem incorporates a search space that is 
too large to explore exhaustively, an evolutionary 
algorithm is the natural choice.  In fact, the class of 
timetabling problems has been intensively studied and 
known to be NP-hard (Even, Itai and Shamir, 1976). 

1.1 THE TIMETABLING PROBLEM 
There are many versions of the timetabling problem 

and they usually incorporate many nontrivial constraints 
of various kinds. The Timetabling problem here for our 
university can be described as follows (de Werra , 1985): 

• There are a finite set of  

classes, }...,,,{ 21 CcccC = , 

time slots }...,,,{ 21 Tttt=T , 

students }...,,,{ 21 SsssS = , 

professors }...,,,{ 21 PpppP =  

• We have a function which maps each 
course to the professor that teaches it. 

PCt a:

•  the time that the kpxdkx kiiki ≤≤≤≤ ,, 1,1, th teaching 
period of course ci is given, p the number of possible 
teaching periods of the university. 

• A solution to this problem is any assignment to the 
variable xi, k such that the following constraints are 
respected: 



A professor cannot give more than one lecture at a 
time 
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Similarily, a student cannot attend more than one 
lecture at a time 
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• A number of soft constraints were not considered 
with this implementation such as the fitness of a one 
class room over another due to characteristics such 
as AV equipment, stadium seating, size, etc.  These 
characteristics were built into the object oriented 
model used in the optimizer but, were omitted at this 
stage to facilitate analysis of the optimizer’s 
behavior. 

Our current objective function is to find a timetable that 
maximizes the number of student survey data s, which 
matches to the tuple in the timetable generated, while 
satisfying various constraints (predicted enrollment). In 
other words, by using the survey data gathered, we are 
trying to minimize time conflicts when students register 
classes. This will be a win-win strategy both for students 
and the University, because for students there will be high 
chance to take classes they plan to take, and the 
University can maximize number of students enrolled. 

We can further divide constraints into hard constraints 
and soft constraints.  Soft constraints are those that would 
allow us to assign values to generated timetables that 
allow us to rank them in order of preference, even though 
the maximized student enrollment is equal for all 
timetables being considered.  An example might be noting 
that, given two timetables T1 and T2, T1 provides equal 
total enrollment to that of T2 but in more classes (average 
enrollment per class is lower).  The university may choose 
to give T2 preference as it provides more efficient use of 
University Resources, or policy may determine that T1 is 
preferred as it improves the Faculty to Student ratio.  At 
this stage, we do consider some soft constraints in ranking 
timetables during the “Survival of the Fittest Function” 
with one of the tested optimizers. 

Hard constraints are those constraints that ensure that a 
given timetable is valid.  The following hard constraints 
are implemented in our project: 

• A Single Class may not be scheduled concurrently.  
In other words, if a Discrete Math Class must meet 
twice a week, the two sessions may not occur 
simultaneously. The total number of classes in 
session at any given moment must not exceed the 
total number of rooms available. 

A single student may not attend two or more classes that 
occupy the same or overlapping time slots. 

1.2 The Use of Real Student Constraint Data 
Since selection of the best population size, mutation rate, 
mutation rate adaptive rule and crossover point remains 
more of an art than a science, we elected to develop a 
platform that will accept real course selection data from 
the student body, before a schedule is published, in order 
to generate the best schedule possible.  Then, using both 
generated and real life data, the algorithm can be run 
repeatedly while varying different parameters to see 
which values give the best result most consistently. 
The Math & Computer Science Department is expected to 
run the final version of platform over the course of 1-2 
weeks, generating several solutions, from which the best 
may be selected.  Thus, we are searching for the 
parameters which give the best peak performance over a 
small sample as opposed to the average performance 
(Eiben and Jelasity, 2002). 

2 UNIVERSITY MCS CURRICULUM 
Our University Math & Computer Science Department 
Curriculum consists of over 90 graduate and 
undergraduate courses, any combination of which may be 
offered in a given a semester.  Required or core courses 
often must be offered both during the day and during the 
evening to accommodate the student body which consists 
of both full time students and working professionals.  
A survey conducted, during the Fall of 2002, determined 
that 38% of our student body is employed full time, 33% 
part time and 84% of our student body lives off campus.  
With such a large percentage of working students, the 
need to schedule courses efficiently in the evenings 
becomes more pronounced. 
Furthermore, we have a potentially severe constraint in 
that our department only has 14 lecture rooms available 
for use.  While classes are sometimes scheduled in other 
department’s facilities, this practice is undesirable due to 
the need for computer resources provided within the 
lecture rooms and short commuting distance between 
rooms. 

3 WEB-BASED INTERFACE FOR 
COLLECTING INPUT DATA 

The main idea of collecting data was to provide the 
students with the list of classes available for next semester 
and the times when the classes can be offered. Based on 
given options the students can choose the classes they are 
interested in and the most suitable time for them. After 
collecting the students’ responses the program will create 
the list of classes that will possibly be offered next 
semester and survey data that later can be used to generate 
the final schedule. It will allow maximum number of 
students to attend offered classes. 
Implementing a university timetabling system to schedule 
classes is a common timetabling problem (Erben and 
Keppler, 1995), (Paechter, Rankin, Cumming and  



Fogarty, 1998), (Burke, Elliman and Weare, 1994), 
(Wong, Côté and Gely, 2002), (Foulds and Johnson, 
2002), (Müller and Barták , 2001).  
 For our system the web based University Schedule 
Wizard (USW) was created. Web based applications in 
general are more convenient for users, for example, 
current or prospective students can complete survey from 
home without going on campus.  USW was developed 
using JSP and Java Servlet for user interface, MySQL 
database and JRun Linux based web server. In order to 
provide rich graphic-user interface Javascript and 
DHTML technology were used.  Also, the users can select 
courses by department, because list of all courses offered 
by the University can be huge. 
The whole process of collecting student’s preferences 
would take just a few minutes. The system was used to 
collect real data and had showed satisfactory results.  
The process of collecting data through USW can be 
divided into two major parts: LTU Student Part and 
Administrator Part. 

3.1 ADMINISTRATOR PART  
The administrator part provides authorization based on 
login and password.  Administrator part (Fig. 1) is used to 
maintain data that is needed to create the initial schedule 
file (initsch.txt). The initial schedule data includes list of 
classes, class times, semester information and number of 
available rooms. Using this part an administrator can 
generate and print output files that are used by a schedule 
generator.  

 
 
Fig 1. View of the Interface for the Administrator’s Part. 
The Administrator can add, modify or delete courses, 
indicates which times are available for scheduling, and 
generates output summarizing the curriculum and student 
data information. 
University Schedule Wizard (USW) uses timeslots pre-
built by administrator for representing class time. First 
letter in timeslot represents day of the week and second 

one represents part of the day. For example: MM - 
Monday Morning, RE – Thursday Evening, FA – Friday 
Afternoon. USW has five different types of timeslots that 
are depended upon the number of times per week the class 
is scheduled. For example: one class is scheduled for 
Monday Afternoon (MA) and another class - Tuesday 
Evening and Thursday Evening (TERE). USW 
implements timeslot maintenance for classes that are 
scheduled up to five times per week. 
After administrator builds timeslots, administrator goes to 
maintenance part where he can add, modify or delete 
courses. For each course administrator provides course 
number, description and timeslots. The timeslots selected 
from the available pre-built timeslots are based on 
provided instructor’s preferences.  A course can be 
offered within one of five groups of timeslots (1 – 5 times 
per week). The timeslots from different groups cannot be 
mixed for same course.  
At the present time system is being updated by exporting 
the list of courses from the different sources. 
The administrator is also responsible for entering the 
number of rooms. 
After administrator builds information for all the courses 
students can start submitting their preferences. 

3.2 STUDENT PART 
Student part provides authorization based on student id. 
Student part (Fig. 2) maintains a student’s preferences 
that will be used to generate the student survey file 
(stusurvey.txt). Those preferences include list of classes 
the students want to take, class times and semester 
information. 

 
 
Fig 2. View of the Interface for the Student Part.   
 



Students can add, modify or delete list of courses in 
which they wish to enroll. They can also indicate which 
times they are available to attend classes. 
The students are not required keying in any information 
manually. All they need to do is to select a semester, class 
and timeslots from the timeslots provided by 
administrator for this class.    
This simplicity allows user to avoid errors, to save a lot of 
time and also helps building reliable data.  Student can 
select one or more classes or timeslots for each class. 
Students can also change his/her selections at any time. 
They modifications can be made until the administrator 
generates the final schedule.  
USW also supports ‘*’ that means any available timeslot 
for current class. 

3.3 OUTPUT FORMAT 
Data collected by USW is formatted to produce output of 
two text files: ‘initsch’ and   ‘stusurvey’ (Fig. 3). The files 
then are used by the schedule generator to create the 
schedule of classes. 

 
Fig. 3. View of text tile output. 
 
This data is available for administrator review and is used 
by the built-in optimizer to generate schedules.  The data 
is also available for export, for use by optimizer 2. 

4 OPTIMIZER IMPLEMENTATION 
Before we can present the results generated by the ES 
Optimizer, it is necessary to describe, in detail, the 
implementations.  The ES Optimizer implements an 
algorithm based on a variation of ES(N+N) where the N is 
the selected population size and the mutation rate and 
adaptive mutation rate can be selected in advance by the 
user. The current implementation reads in the 
initialization data from the parameter selection on the 
main GUI (Fig. 4) and also from the two data input text 
files (Fig. 3). From the two text files and user selections, 
the optimizer initializes the following: 

• The adaptive rate (based on the 1/5th rule). 

• The initial Mutation Rate. 

• The era (number of generations that pass before the 
1/5 rule is evaluated. 

• The Population Size (initial and maximum allowed to 
survive each generation). 

• The crossover rate (% of a child’s “genetic material” 
that is derived from the more fit of two parents. 

• Generate N (10 is the default) Schedules to make up 
the population. Schedules contain every possible 
course. 

• Each course in a schedule is randomly assigned a 
"legal" timeslot.  

The fitness characteristics for each schedule are 
determined based on total enrollment, student preferences 
fulfilled (students can only attend one class during a given 
period), and average enrollment per course. 

---initsch.txt---
ME TE WE MEWE TERE WEFE
14
MCS5013 ME TE WE
MCS5043 ME TE WE
MCS5103 ME TE WE
MCS5203 ME TE WE
MCS5303 MEWE TERE WEFE
MCS7993 TE

---stusurvey.txt---
AS000000647 MCS5013 *
CC000000708 MCS5013 TE
CC000000708 MCS5303 *
IT000001301 MCS5103 WE
IT000001301 MCS5203 *
IT000001301 MCS7993 ME

 
1st line displays all available timeslots 
2nd line displays available rooms 
 
 
All other lines display possible classes to 
schedule and available timeslots. 
 
 
 
 
 
All lines display student id, class and time 
preferences. 
‘*’ indicates the student is available to take 

this class any time (no constraint).

 
 
Fig. 4. View of the GUI Interface for the ES Optimizer. 
This GUI can be used to set the adaptive function, base 
mutation rate, era size, crossover rate and population size. 

4.1 THE EVOLUTIONARY LOOP 
The Individual 
Each individual in the population consists of a complete 
schedule.  Courses scheduled illegally (violating any of 
the basic constraints) are marked cancelled.  Thus an 
individuals simplest representation consists of a list of 
courses with the scheduled weekly meeting times 
appended. 

Crossover 
1. Allow each individual to mate with another. Mates 

are currently randomly selected with the following 
conditions:  

• Each individual is guaranteed to mate at least 
once and generate one child. 

• Schedules cannot mate with themselves.  



2. Generate offspring. For each mated pair, the parent 
with the best fitness rating contributes X% (50% 
default) of scheduled courses, selected randomly. The 
second parent contributes the remaining courses.  
Thus every child contains all possible courses. 

Note that a single crossover point is NOT selected.  
Genes are selected randomly from the first parent 
until the selected contribution percentage is fulfilled.  
This should result in more degrees of freedom in 
traveling the search space.  Order of classes within 
each individual (schedule) is arbitrary and should 
have no bearing on the problem or solution. 

Mutation: 
1. All of the children are subject to mutation (parents 

are not). Each course (gene) in a child has a 
(Mutation Rate) % chance of mutation.  (Provision of 
a switch to allow mutation of parents may enhance 
the algorithm’s ability to locate local maxima.) 

2. If mutated, a new legal set of class times is randomly 
selected from the pool and assigned. 

Enrollment (for each child):  
1. Enrollment for each course within a child schedule is 

determined based on the student survey information. 
Students are not allowed to enroll twice in the same 
course or to enroll in a course that does not fit their 
availabile time constraints. They schedule all courses 
in order of decreasing preference until either all 
selections have been evaluated or their maximum 
enrollment has been reached. 

2. The courses are sorted in order of decreasing 
enrollment.  

3. Courses are assigned rooms (professor limit is 
equally valid) for each period scheduled in order of 
decreasing enrollment. If no rooms are available, that 
course is marked cancelled.  

4. Students re-enroll in the courses that are not 
cancelled to determine the final enrollment  

Note: it is possible that enrollment would be better 
with another selection of course cancellations, but the 
student preferences would have been ignored in that 
case). 

5. A count of preference violations and determination of 
average enrollment per class is now recorded in the 
schedule object for future comparison purposes. 

Survival of the Fittest 
1. Duplicate schedules are eliminated from the 

population. 

2. Schedules are now sorted in order of decreasing 
fitness (enrollment).  

3. The top N (10) schedules survive (If current 
population is less than N, new members are 
generated). 

4. If the best schedule is better than those from previous 
generations, an "Improved" Counter is Incremented 
and the best schedule is saved.  

5. A generation counter is incremented.  

6. If the generation is a multiple of the Era or Window 
Size: 

• The mutation rate /= OneFifthRule (1.2 is the 
default) if more than 1 of 5 generations have 
shown improvement.  

• The mutation rate *= OneFifthRule (1.2 is the 
default) if fewer than 1 of 5 generations have 
shown improvement. (Mutation rate is not 
permitted to exceed 100%) 

Loop Decision:  

If the population has not improved for an arbitrary 
number of generations (Era  + 50 currently), then the loop 
exits. Otherwise it continues.  The optimizer should run 
enough generations to ensure that evolution towards a 
better solution is unlikely. 

EXIT COMPUTATION: 

At this point, the best schedule (Fig. 4) can be viewed on 
screen or saved as a text file for later analysis.  Data to 
specific to each generation (mutation rate, best schedule 
enrollment, etc.) are also recorded to a text file (Fig. 5) for 
analysis. 

 
 
Fig.5. Sample Portion Of The Output Of A Schedule 
 

 
 
Fig. 6. Sample Output Of Data During The ES Process 
For Graphing And Statistical Analysis. 
 



5 THE TEST DATA SETS AND TEST 
SUITES 

We asked the Department Chair for the data to populate 
the “initsch.txt” file.  He selected available time slots for 
each class, considering the instructors’ preferences and 
availability.  This is very important since adjunct faculty 
members who have other jobs teach 80% of all the classes 
offered by the department.  Thus there are severe 
restrictions on what times a course may be offered. 

In order to capture real world data, we requested all 
students (undergraduate and graduate) majoring in a math 
or computer science discipline to participate by logging 
into the web-based interface to select their courses as if 
they were registering.  69 courses listed in our published 
Spring 2003 Schedule were available for selection. The 
students provided their personal time constraints but were 
not told of any restraints for the classes. 
We achieved participation of 51 students, which is 
approximately 20% of the total number of students 
available. Each student selected a mean of 2.6 courses (σ 
= 1.4) with a maximum selection of 6 courses.  We used 
this data and ran both optimizers five times each with 
population sizes of 1, 3 and 10, using the following fixed 
parameters: 
Mutation Rate = 5% 
Crossover (Optimizer 2) = 50 
Era (Optimizer 2) = 50 

 
Fig. 7. Comparison Of Convergence Using 4 Different 
Population Sizes 

6 CONCLUSIONS 
As you can see from Figure 7, the optimizer converged 
quite rapidly.  We also found that the data generated was 
very consistent.  While the above figure represents the 
best of 5 runs for each of population sizes 1, 3, 10 and 
100 respectively, additional runs at the same population 
size failed to yield better peak results.  In other words, a 
separate trial running 20 more runs on a population size of 
10 failed to find a solution with enrollment >= to 60.  This 

is in contrast to multiple runs with population sizes of 100 
in which no result provided an enrollment of less than 70. 

This leads to the supposition that the trend is to find better 
solutions with increasing population size.  However, 
additional runs with population sizes in excess of 100 
failed to yield better results and additional runs with 
population sizes of 50 rendered near identical results.  So, 
it appears that with the constraints or our data set, the 
optimizer is able to consistently find the near best solution 
with a population size of 50 or larger. 
Knowing that courses had available a minimum of 5 
allowed time slots and a maximum of 10 allowed time 
slots , the total search space encompasses more than 569 
possible combinations.  Even allowing for restrictions that 
prevent more than 14 classes being scheduled in an 
overlapping time period (14 rooms) this still 
conservatively yields 514 or approximately 6 billion 
combinations as a bottom limit.  Clearly a population size 
of 50 << than the total search space and it is unlikely that 
we are exhaustively searching the set of all solutions. 
In conclusion, this application of an evolution strategy for 
a university timetabling problem appears to be quite 
successful and we are ready to implement it to generate 
actual schedules for future terms.  It is our hope that this 
system can also be adapted for use at other universities 
and for use in similar problems such as scheduling 
conferences, reducing the number of conflicts preventing 
attendees from attending conflicting presentations. 
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