

LEAP Motion Sensor Implementation
in Robotics Control Systems

Joe Long
Masters of Science in Computer Science Program

Faculty Adviser:
Dr. CJ Chung

12/15/2016

Abstract
The LEAP Motion sensor, as a means to pass commands on to robots, presented a number of potential
benefits to experiment with. One such basic implementation is standard steering and navigation from
remote locations. To simulate this, a PC was setup with a LEAP Motion sensor. Meanwhile, another
laptop was setup to act as a controller on the demo L2Bot. With both laptops connected via UDP
sockets, the control station laptop can read in the LEAP sensor data, interpret it, then pass along
commands to the remote laptop. This experiment is to test the feasibility of the LEAP sensor in such an
environment as well as the general viability of virtual control systems for future implementation.

2

Table of Contents
LEAP Motion Sensor Implementation in Robotics Control Systems.. 1

Abstract ... 1

Method ... 2

Technologies Used ... 2

About the Transmitter / Control Station .. 3

Communications.. 6

About the Receiver and Robot Control... 6

Appendices, Additional Resources, and Demonstrations .. 7

Special Thanks to… .. 7

Method
As a means of testing the LEAP sensor’s viability in acting as a robot control mechanism, I’ve setup the
LEAP sensor in tabletop mode, facing up toward the operator’s hand. When only one hand is detected,
it will then run through a series of conditionals to find out which pattern fits the finger positions at that
moment. In the long run a more dynamic interpretation engine would prove helpful, but as a means to
test the sensor itself this more than meets the need.

To simplify execution and keep the focus of the project on the LEAP sensor’s interpretation layer, the
communications and workflow of this project have been heavily simplified. Commands are read in by
the C# script in Unity that then uses sockets to communicate with the PC on the robot.

Technologies Used
• Unity (using C# and .NET 2.0)
• LEAP Motion Sensor
• Two laptops, one as the receiver with the receiver’s .exe file copied to it, one as the sender with

the sender.exe file on it.
• L2Bot
• Standard home router, no special configuration

3

About the Transmitter / Control Station

Introduction and Implementation in the Unity Environment
The transmitter uses the Unity environment, primarily because we found that the Unity implementation
of the LEAP Motion libraries offered the most accurate results. It also allowed for a pre-built method of
visualizing the hand model on the screen and having scripts continue to run in the background. Unity
itself is only getting the most basic of uses, the screen display only shows the primary frames and no
other wireframe elements are in scope short of the hand objects being controlled by the LEAP Sensor
prefab objects.

Directional Interpretation
With Unity handling most of the timing and visual support, the development could focus solely on the
LEAP libraries, how hand and joint positions are detected, and using this data to interpret gestures and
direction. The current system is very rudimentary steering system, interpreting hand gestures into one
of seven commands that are then sent over the network to the receiver.

Gestures are made over the sensor while standing directly behind it and the operating laptop, making
sure that the sensor is perpendicular to the operator’s body. The nine gesture commands detected in
the current version are:

4

• Stop: Hold a closed fist over the sensor

if(fingers.Count(f => f.IsExtended) == 0)
{
 Debug.Log("Stop");
 SendRobotCommand(LoCoMoCo.RobotCommmands.Stop);
}

• Coast: No hands detected over the sensor

if(currentFrame.Hands.Count == 0)
{

Debug.Log("No hands found: Coast");
SendRobotCommand(LoCoMoCo.RobotCommmands.Coast);

}

• Forward: Point two or three fingers forward

if(pointerFinger.Direction.Yaw >= 2.9 || pointerFinger.Direction.Yaw <= -2.9)
{

Debug.Log("Forward");
SendRobotCommand(LoCoMoCo.RobotCommmands.Forward);

}

• Bank Left: Point two or three fingers about 20 degrees to the left of straight forward

// Yaw is between -2.6 and -2.9
if (pointerFinger.Direction.Yaw <= -2.6 && pointerFinger.Direction.Yaw > -2.9)
{

Debug.Log("Bank Left");
SendRobotCommand(LoCoMoCo.RobotCommmands.BankLeft);

}

• Bank Right: Point two or three fingers about 20 degrees to the right of straight forward

// Yaw is between 2.6 and 2.9
if (pointerFinger.Direction.Yaw >= 2.6 && pointerFinger.Direction.Yaw < 2.9)
{

Debug.Log("Bank Right");
SendRobotCommand(LoCoMoCo.RobotCommmands.BankRight);

}

• Turn Left: Point two or three fingers about 45 degrees to the left of straight ahead

// Yaw is greater than than -2.6
if (pointerFinger.Direction.Yaw > -2.6)
{

Debug.Log("Turn Left");
SendRobotCommand(LoCoMoCo.RobotCommmands.TurnLeft);

}

5

• Turn Right: Point two or three fingers about 45 degrees to the right of straight ahead

// Yaw is less than 2.6
if (pointerFinger.Direction.Yaw < 2.6)
{

Debug.Log("Turn Right");
SendRobotCommand(LoCoMoCo.RobotCommmands.TurnRight);

}

• Pivot Left: Hold a closed fist over the sensor with your thumb extended to the left

if(thumb.Direction.Roll < -1.1 && thumb.Direction.Roll > -1.8)
{

Debug.Log("Pivot left");
SendRobotCommand(LoCoMoCo.RobotCommmands.PivotLeft);

}

• Pivot Right: Hold a closed fist over the sensor with your thumb extended to the right

if ((thumb.Direction.Roll > 1.1 && thumb.Direction.Roll < 3.1) ||
 (thumb.Direction.Roll < -2 && thumb.Direction.Roll > -3.1))
{

Debug.Log("Pivot right");
SendRobotCommand(LoCoMoCo.RobotCommmands.PivotRight);

}

A demonstration of the gesture controls can be found at:
https://youtu.be/s0ScYDyKMQs

The Need for Additional Communication Methods
The original concept for this was on a riding robot, where the operator could be physically on the robot
steering it using these hand gestures on a virtual dashboard of sorts. When moving the test case over to
the L2Bot though it was apparent that wireless communication of some sort would be needed, as the
operator can’t exactly be following around the L2Bot while holding their hand over it and get accurate
results.

The project scope was then expanded to include close range, wireless communication between a control
station then an additional PC that would be on the L2Bot, receive the commands, then control the L2Bot
accordingly. The simplest method was to use a UDP socket connection over a home router as a general
proof of concept. More advanced versions could include sockets over cellular connections, TCP to
confirm connection states, or additional socket connections to allow for two-way communication, but
the current proof of concept is a one-way street simply passing direction instructions at 30 messages per
second.

https://youtu.be/s0ScYDyKMQs

6

Communications
The two laptops communicate using a rebuilt version of the existing LoCoMoCo class. On its own,
LoCoMoCo allows for direct communication between a laptop and a motor controller. The modified
version is a DLL that packages the LoCoMoCo class along with additional classes for master/slave UDP
connections, along with the various support functions needed to store and send commands, then
translate the commands back into the instructions passed to the L2Bot. Future plans are slated to
include also include Bluetooth, TCP, or other protocols.

About the Receiver and Robot Control
 The UDP Receiver application is the
simplest component of the set. It listens
for UDP connections coming in over a
set port, translates the command flag
into an executable robot command,
then passes that command onto the
LoCoMoCo motor controller. As a visual,
as commands are received, the
corresponding directional command in
the form UI lights up.

The primary component in this module
is the implementation of a robot
command library and testing receiving
rates for different commands and how
passing commands can be optimized. This variant uses integers that correspond with C# enum values as
shown below:

• Stop: Both motors stop rotating
• Coast: Both motors fall into a coast state, will take ~5” to coast to a stop
• Forward: Both motors forward at full power
• Bank Left: Left motor on coast, right on full power forward
• Bank Right: Right motor on coast, left on full power forward
• Turn Left: Left motor stopped, right on full power forward
• Turn Right: Right motor on coast, left on full power forward
• Pivot Left: Left motor full power reverse, right motor full power forward
• Pivot Right: Right motor full power reverse, left motor full power forward

With this success, it’s also possible to start sending more complex data, possibly serialized objects that
correspond with motor directions or simple XML data being sent as strings. The primary weakness with
the current structure is that enum elements would have to be created for every permutation of each
wheel being in a forward, reverse, coast, or stop states, making this integer sending method quite
restrictive.

7

Appendices, Additional Resources, and Demonstrations
To learn more about using the LEAP sensor with Unity:

• LEAP Motion’s C# Documentation:
https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html

• Getting started in Unity:
https://unity3d.com/learn/tutorials/topics/developer-advice/how-start-your-game-
development

• LEAP and Unity Setup Training:
https://developer.leapmotion.com/unity

A full demonstration of this test robot control system can be found at:
https://youtu.be/rSMKtIB0Gtw

Special Thanks to…
Prof. Gordon Stein

For sample material integrating Unity with the LEAP sensor

Adeline Miller
For development and research assistance

https://developer.leapmotion.com/documentation/csharp/devguide/Leap_Overview.html
https://unity3d.com/learn/tutorials/topics/developer-advice/how-start-your-game-development
https://unity3d.com/learn/tutorials/topics/developer-advice/how-start-your-game-development
https://developer.leapmotion.com/unity
https://youtu.be/rSMKtIB0Gtw

	LEAP Motion Sensor Implementation in Robotics Control Systems
	Abstract
	Method
	Technologies Used
	About the Transmitter / Control Station
	Communications
	About the Receiver and Robot Control
	Appendices, Additional Resources, and Demonstrations
	Special Thanks to…

