

VoxWorld: A Destructible & Procedurally

Generated 3D Voxel Engine in C++

Mitchell Pleune

3/28/2017

Abstract
VoxWorld is a three-dimensional voxel game engine built from the ground up using SDL2 and

OpenGL calls. It allowed for research in compressed voxel storage using a custom octree data

structure, memory efficient mesh generation, the pros and cons of different rendering

pipelines, procedural generation with 2D and 3D noise functions, and post-processing rendering

effects. VoxWorld effectively utilizes multiple threads. VoxWorld’s code is on Github

(https://github.com/Pleune/VoxWorld), and builds nicely on any Linux system. Windows

binaries are also available.

2

Table of Contents
VoxWorld: A Destructible & Procedurally Generated 3D Voxel Engine in C++... 1

Abstract ... 1

Libraries Used .. 3

Compiling (Linux) ... 3

State Stack (gameengine.cpp) .. 4

Voxel Storage (voxeltree.hpp) .. 4

Mesh Generation (chunk.cpp) ... 5

Procedural Generation (chunkgen*.cpp) .. 5

Rendering Pipeline (world.cpp) .. 6

Post Processing (bin/shaders/pfs) .. 7

VoxWorld using its 2D perlin generation

3

Libraries Used

VoxWorld uses two libraries to create windows in a platform agnostic way (SDL2), and wrangle OpenGL

function pointers (GLEW).

SDL2 (Simple DirectMedia Layer) is an industry standard library that provides low-level accesses to

audio, keyboard, mouse, joystick, and graphics hardware. The library also provides a cross-platform

window creation API. SDL2 supports Windows, Linux, Mac OS X, iOS, and Android.

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform open-source C/C++ extension-

loading library. GLEW provides efficient run-time mechanisms for determining which OpenGL extensions

are supported on the target platform.

Compiling (Linux)
1. Install the required software through your distro’s package manager:

a. Debian Based:

b. Arch:

2. Clone the git repo

3. Make and run the project

apt-get install build-essential git libsdl2-dev libsdl2-ttf-dev libglew-dev

pacman –S base-devel git sdl2 sdl2_ttf glew

$ git clone https://github.com/Pleune/VoxWorld

$ cd VoxWorld

$ make run

4

State Stack (gameengine.cpp)
VoxWorld uses a stack based state machine to keep track of the macro structure of the project. The

state engine repeatedly calls the run() and input() functions in the active state (the state on the

top of the stack). Each state has three options to control the flow of the program:

• pop(), to pop itself off the stack and resume the state under it

• push(), to pause itself, and to initialize a new state on top of itself

• change(), to pop itself off the stack then immediately push a new state onto the stack.

The state engine is created on program execution, and initializes itself with state_initalize on the stack.

The program terminates once all states have popped off the stack. State_initalize and state_window

automatically pop themselves off the stack if they are resumed.

Voxel Storage (voxeltree.hpp)

Voxel data is stored in a 3D array like container very similar to an

octree. Octrees work by representing a three-dimensional space

by a node, then dividing node’s space into eight octant-nodes

(each side is cut in half) recursively, n-times. Any nodes whose

child nodes are all the same are then simplified into a single

node. A 2D representation of a curved surface is show to the

right.

Octrees proved to be an extremely efficient storage structure, as

many huge areas of the world are either entirely land or air, and

are the compressed into a small number of large nodes.

The VoxelTree data type goes a step beyond the standard octree

implementation by allowing different numbers of divisions per node (2�, 2�, 2�, ���.). This is done

through templates to allow for far better compiler optimization.

This method of compression takes what would be tens to hundreds of GiB of voxel data and compresses

it down to ~100MiB.

state_initalize

state_window

state_menu state_game

5

Mesh Generation (chunk.cpp)

The mesh generation did not focus on reducing the number of triangles, because the generally accepted

solution to this already exists and is well documented: greedy meshing. Instead, efficient usage of

memory per vertex is valued. The world mesh is separated into 32x32x32 voxel chunks that are

individually generated and rendered.

This is done by creating a master array (also known as an element array) containing all possible vertices

(all integer positions within a chunk, and all possible voxel types). The size of this array is

�ℎ������ℎ� ∗ �������������. A chunk mesh is then simply a list of vertices (every three

represents a single triangle). Each vertex is represented by a two byte short that indexes into the

master array. This saves considerable amounts of memory, because without the master array six shorts

(3 positional and 3 color) represented each vertex.

In the case of a 10,000 chunk world (13 chunk render radius), the 6 short vertex representation used 5

GiB of graphics memory. The element array representation brought this down to 1.1 GiB. There is a

slight overhead of ~.3GiB for the element array itself.

Procedural Generation (chunkgen*.cpp)
World generation is handled through an abstract chunk generation class (chunkgen.hpp). There are a

couple test generators (chunkgen_simple.hpp). The rest of the generators use either 2D or 3D perlin

noise to create infinite procedural terrain.

Perlin noise generates a grid of random values (-1 to 1), and then interpolates smoothly between them.

An arbitrary point can be calculated without any contextual information, making it perfect for

procedural generation.

In the 2D case, four frequencies of perlin noise are used: 10 blocks, 33 blocks, 125 blocks, and 1000

blocks between points on the grid. The output from each noise function is weighted and summed

together to produce a single pixel in a height map.

void ChunkGeneratorPerlin2D::gen_map(Heightmap &map)
{
 long3_t cpos = map.pos;
 for(int x=0; x<map.width; x++)
 for(int z=0; z<map.width; z++)
 {
 map.set(x, z,
 Noise::Perlin2D::noise(1, .001,
 x + cpos.x*c_width, z + cpos.z*c_width)*200 +
 Noise::Perlin2D::noise(2, .008,
 x + cpos.x*c_width, z + cpos.z*c_width)*90 +
 Noise::Perlin2D::noise(3, .03,
 x + cpos.x*c_width, z + cpos.z*c_width)*20 +
 Noise::Perlin2D::noise(4, .1,
 x + cpos.x*c_width, z + cpos.z*c_width)*4
);
 }
}

6

In the 3D case, a similar approach is used. However, the sum of the Perlin3D functions represents a

density. If this density is positive, a block is created, otherwise the block is left as air. Each density value

is then adjusted by the world height, so that lower voxels are almost always solid, and more and more

voxels become air higher up.

Rendering Pipeline (world.cpp)
All world data (voxel data and mesh data) is separated into 32x32x32 voxel chunks. All of these chunks

are constructed into a std::map, using its position as a key. Only a single thread accesses this data

directly: World::client_tick_func().

This thread continually sweeps the map, and generates a series of vectors containing pointers into the

map data. For example, a vector called chunks_for_render is generated containing all of the chunks that

have been fully generated and meshed. This is given to the render thread to display:

A mutex is used alongside each list, so that the client_tick thread may change the list without disrupting

the other threads.

Client_tick tries to keep all chunks within a distance from the camera in the map, and any chunks

outside this distance are deleted to free up memory.

//For each voxel
 float density =
 Noise::Perlin3D::noise(1, 0.01, X, Y*2, Z);

 density -= Y/60.0; //Y represents the world height-coordinate
 //of the voxel

chunks_for_render_m.lock();
if(chunks_for_render)
{
 for(std::vector<Chunk *>::iterator it =
 chunks_for_render->begin(); it != chunks_for_render->end(); it++)
 (*it)->render(camera.pos);
}
chunks_for_render_m.unlock();

7

Post Processing (bin/shaders/pfs)

VoxWorld renders its world in a two-step process. First, all of the voxels are rendered as one flat color

without any shading. Second, the rendered scene is shaded based on depth-map of the world.

Before:

After:

(Note: the brown dirt voxels in this picture are not in the before picture)

8

As can be seen, the post-processing adds all of the detail to the rendering. Without it, neither block

edges nor mountains are distinguishable.

The depth map of the rendering contains the distances of each pixel from the camera. The post-

processing shader effectively takes a two dimensional derivative of the depth map. For every pixel, the

larger the magnitude of the derivative map, the more the unshaded render is darkened. This can be

seen by the dark outlines between the foreground and the background. The sudden change in distance

from the camera creates a bold black line, where every pixel is completely darkened.

