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ABSTRACT

We developed and applied a computer analysis method to detect ring galaxy
candidates in the first data release of PanSTARRS. The method works by ap-
plying a low-pass filter, followed by dynamic global thresholding to search for
closed regions in the binary mask of each galaxy image. Applying the method
to ∼ 3 · 106 PanSTARRS galaxy images produced a catalog of 186 ring galaxy
candidates based on their visual appearance.

Subject headings: catalogs — techniques: image processing — methods: data analysis
— galaxies: peculiar

1. Introduction

Ring galaxies are rare irregular galax-
ies that are not on the Hubble classifi-
cations scheme. Theys & Spiegel (1976)
proposed a separate classification scheme
for ring galaxies that includes three sub-
classes based on their visual appearance:
Empty ring galaxies (RE), Ring galaxies
with off-center nucleolus (RN), and ring
galaxies with knots or condensations (RK).
They also identified that most, although
not all, ring galaxies have a companion
(Theys & Spiegel 1977). Few & Madore
(1986) separated ring galaxies into two
sub-classes: ‘’P-type” rings, which have a
knotty structure or an off-center nucleolus,
and “O-rings”, characterized by a smooth
ring structure and a centered nucleolus.

Ring galaxies include polar rings (Whit-
more et al. 1990; Macciò et al. 2005;
Reshetnikov & Sotnikova 1997; Finkelman
et al. 2012; Reshetnikov & Combes 2015),
collisional rings (Appleton & Struck-Marcell
1996), and Hoag-type objects (Longo et al.
2012). The “Hoag’s Object” (Hoag 1950;
Brosch 1985; Schweizer et al. 1987) was
discovered in 1950, and its discovery was
followed by the identification of other ring
galaxies.

Catalogs of rings galaxies were created
in the past by manual observation. The
early Arp (1966) catalog of peculiar galax-
ies contains two galaxies with visual ap-
pearance of an empty ring. The catalog of
southern peculiar galaxies (Arp & Madore
1988) includes 69 systems identified as
rings. Whitmore et al. (1990) compiled
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a list of 157 polar ring galaxy candidates,
and about half a dozen of these objects
were confirmed as polar ring galaxies by
kinematic follow-up observations (Finkel-
man et al. 2012). Madore et al. (2009) pre-
pared an atlas of collisional ring galaxies.
Garcia-Ribera et al. (2015) discovered 16
polar ring galaxy candidates. Buta (1995)
created a catalog of Southern ring galaxies.
Moiseev et al. (2011) used crowdsourcing
and non-scientists volunteers to prepare a
catalog of ring galaxy candidates through
the Galaxy Zoo citizen science campaign.

While manual analysis performed by ex-
pert or citizen scientists has provided use-
ful catalogs of ring galaxies, the rapidly
increasing data acquisition power of dig-
ital sky surveys such as the Large Syn-
optic Survey Telescopes (LSST) can po-
tentially allow the identification of a very
large number of ring galaxies among a to-
tal of billions of astronomical objects. Due
to the large size of these databases, ef-
fective identification of these objects re-
quires automation, leading to the devel-
opment of automatic methods of identi-
fying peculiar objects in large databases
of galaxy images (Shamir 2012; Shamir &
Wallin 2014; Shamir 2016). Here we de-
scribe an automatic image analysis method
that can identify ring galaxies, and apply
the method to mine through ∼ 3·106 galax-
ies imaged by the Panoramic Survey Tele-
scope and Rapid Response System (Ho-
dapp et al. 2004; Flewelling et al. 2016;
Chambers et al. 2016) to compile a catalog
of ring galaxy candidates.

2. Methods

2.1. Data

The dataset was obtained from the
Panoramic Survey Telescope and Rapid
Response System (PanSTARRS) first data
release (Hodapp et al. 2004; Flewelling
et al. 2016; Chambers et al. 2016). The
initial dataset includes 3,053,831 objects
with r magnitude of less than 19. To
avoid stars, the dataset included 2,394,452
objects identified as extended sources in
all bands, and 659,379 additional objects
that were not identified as extended ob-
jects in all bands, but their PSF magnitude
subtracted by their Kron magnitude was
larger than 0.05, and their r Petrosian ra-
dius was larger than 5.5”. The images were
then downloaded via the PanSTARRS
cutout service as 120×120 JPG images,
in a process similar to the image download
done in (Kuminski & Shamir 2016). To
avoid pressure on the PanSTARRS web
server, one image was downloaded at a
time, and therefore the processes required
62 days to complete.

Images that contain substantial noise or
artifacts are difficult to analyze correctly,
and can trigger false positives as will be
explained in Section 2.2. Due to the large
scale of the initial dataset, even a low rate
of false detections can lead to an unman-
ageable resulting dataset. Because com-
pression algorithms are more efficient when
the signal is smooth, clean images of real
galaxies tend to have a smaller compressed
file size, and therefore artifacts and noisy
images can be rejected by their compressed
file size (Kuminski & Shamir 2016). Ta-
ble 1 shows examples of galaxy images and
their file sizes. Based on empirical observa-
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tions, a threshold was set so that only im-
ages with file sizes of less than 5.5KB were
analyzed, and larger files were rejected.

Table 1: Examples of clean galaxy im-
ages and artifacts or noisy images in
PanSTARRS. The file size provides a sim-
ple mechanism to reject noisy images.

PanSTARRS File size Image
object ID (KB)

102230806134866752 9.40

103480451533225122 9.58

103570759842751155 9.43

100840464055080903 3.17

104720155726185389 3.10

104941422843081464 3.88

2.2. Galaxy image analysis

Each image is smoothed by utilizing a
median filter with window size of 5×5 to
facilitate noise reduction, and converted
to grayscale. The image is then con-
verted into its binary mask using a dy-
namic threshold. The dynamic threshold
starts with a minimum of 30, and is incre-
mented iteratively until it reaches the gray
level of 200. The conversion of the original
ring galaxy into a binary map is displayed
by Figure 1.

Fig. 1.— The stages in converting the orig-
inal image into its binary map.

Fig. 2.— Dynamic thresholding binary
maps. The Images show binary maps with
thresholds of 20 (left), 44, 83, 99, and
115. The figure shows that when using a
graylevel of 44 the ring is identified in the
binary mask, while other graylevel thresh-
olds show no ring.

For each threshold level the binary mask
is computed, and a search for a ring in-
side the foreground is done using a Flood
Fill algorithm (Asundi & Wensen 1998).
Flood fill is an algorithm typically associ-
ated with the “bucket fill” tool in paint-
ing programs. Here we used a stack-based
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4-connected version of the flood fill algo-
rithm, which is a non-recursive process
starting with an initial pixel and then an-
alyzes the four pixels surrounding it. Each
of these four pixels is flagged, and then the
neighbors of each of them are also added.
That continues until all pixels are flagged,
or no neighbors with value of 0 remain.
In that case it is determined that no path
of pixels of value 0 to the edge exist, and
therefore the image is suspected as a ring
galaxy. However, if a pixel that is on the
edge of the image is flagged, the algorithm
stops and it is determined that no ring ex-
ists in that graylevel threshold.

The flood fill algorithm is applied for
each pixel in the binary mask. If the flood
fill algorithm finishes without reaching a
pixel that is on the edge of the frame,
the number of pixels in the closed area
are counted, and divided by the number
of foreground pixels. If the number of pix-
els in the closed area is less than 10% of
the number of foreground pixels, it is as-
sumed that the closed area is too small
to be considered a ring galaxy. Figure 3
shows an example of closed areas in the
binary mask that can be considered can-
didate rings (left), and small areas in the
binary mask of the same image that are
merely local grayscale variations (right).

2875 297 837 28

FailSuccess

Fig. 3.— Comparison of the size of the
closed area to the size of the foreground.

Processing of a small 120×120 galaxy

image using a single core of an Intel Xeon
E5-1650 requires ∼2.1 seconds to com-
plete.

2.3. False detections

When mining through a very large num-
ber of galaxies, even a small rate of false
detections can lead to an unmanageable
database. Of over three million images
that were tested, the algorithm detected
2490 galaxies in which manual inspection
showed no ring. These galaxies included
artifacts, saturated objects, and regular
galaxies. Table 2 shows examples of false
detections of the algorithm. As can be seen
in the example images, overlapping arms
or stars nearby a spiral galaxy can lead to
false detections. Saturated objects can also
be mistakenly identified as rings. However,
these objects are fairly rare, and the false
detection rate is less than 0.1% of the ini-
tial set of galaxies.

Table 2: Examples of false detections.
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3. Ring galaxy candidates

The ring galaxy candidates that were
detected with their right ascension and
declination coordinates are shown in Ta-
ble 3. The table contains candidate
ring galaxies with centered nucleolus, off-
centered nucleolus, ring galaxies with
knotty structure, interacting systems, and
galaxies that have rings and arms.
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Table 3:: Ring galaxy candidates identified automatically
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4. Conclusion

Autonomous sky surveys have enabled
the acquisition of very large databases of
image and other data, substantially in-
creasing the discovery power of ground and
space-based telescopes. To utilize the dis-
covery power and turn these data into sci-
entific discoveries, it is required to ap-
ply computational methods that can mine
these very large databases. Since a sub-
stantial part of these data are in the form
of images, full analysis of the data requires
image analysis methodology. Here we use
a simple and fast automatic image analysis
method and apply it to the PanSTARRS
first data release to detect ring galaxy can-
didates. Despite the simple nature of the
image analysis method, it can find ring
galaxies that are highly difficult to find
without using automation, and it is suf-
ficiently fast to be applied to much larger
databases such as LSST.
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