
Optimizing University Course Schedules 
Using Evolution Strategies 
Sindhu Jampani 
Lawrence Technological University 
sjampani@ltu.edu 
 

Introduction 
Simplified course scheduling problem includes a finite set of courses C = {C1, C2, C3, ..., C|C|}, time slots 
t = {t1, t2, ..., t|t|}, students S = {S1, S2, ..., S|S|}, professors P = {P1, P2, ..., P|P|}, and a table which maps 
each course C to a professor P that teaches it. The optimization problem here is to find a best schedule 
that maximizes the number of course registrations while satisfying the following two constraints: (1) A 
professor cannot give more than one lecture at a time and similarly, (2) a student cannot attend more 
than one lecture at a time [1].  

However, usually, course scheduling is done without applying optimization methods and not considering 
the faculty and students' preferences. This leads to the problem of less number of registrations to the 
university as well as the students are unable to enroll maximum number of courses in a given semester, 
thereby causing possible delays in the students’ graduation. The main goal of this project is to generate 
the best schedule that maximizes the number of course registrations while satisfying faculty and students’ 
preferences.  

In this research, unlike previous system in [1], we propose a new scheduling framework that considers 
faculty member’s preferred teaching day and day parts as well as students’ preferred day and time to take 
selected courses. Since this is known to be a NP (Non-Polynomial) hard problem [2], instead of using 
traditional search algorithms, we decided to use evolutionary algorithms. The optimizer generates 
Optimized Course Schedule & Class Roster as shown in the following figure. 

 

1 
 

mailto:sjampani@ltu.edu


Methods 
Web Interfaces to collect Faculty and Student Data 

Two web interfaces are designed and implemented using JSP and Tomcat server to collect the 
preferences of the faculty as well as the students for their respective courses. Backend MySQL database 
was developed to store preferences as well as faculty-course data. 

The Faculty Web Interface has the input field of “Faculty ID”, where faculty can select their ID from the 
dropdown menu and the field “Total number of classes to teach, C”, where the faculty can enter how 
many classes they are going to teach in the given semester. They can also select all the available 
dayparts in a week schedule. It is required for a faculty to check at least 3+C*2 check boxes. For 
example, if a professor teaches 3 classes, then at least 9 daypart check boxes must be selected. 

 

 

In the student web interface, students enter their student id in the textbox of “Student ID” and select their 
top three priority classes from the dropdown menu. They can submit their preferences by selecting their 
available day and dayparts. Students may select only one check box or all the check boxes for the day 
and dayparts. 

 

 

 

 

 

2 
 



 

Optimization Algorithms Developed 

Six algorithms using (N+N) Evolution Strategies [2] are designed and implemented to generate optimal 
schedules. The best schedule would be the one which can get the maximum number of enrollments. The 
following is the pseudo code for the simplest ES(N+N) algorithm with mutation operator only. Class-time 
for an offspring’s course is selected using a uniform random number from the common dayparts between 
instructor’s preferable dayparts and all students’ preferable dayparts.  

ES(N+N) 

GET student and faculty preferences from database 
Repeat T (Trial) times 
    Generate & Evaluate N random parent schedules 
    Repeat G (Generation) times      
        For each parent schedules 
            For each course in the parent schedule // mutation 
                Randomly select a class-time considering both faculty and students’ preference as well as scheduling constraints 
            End-of-processing-all-the-courses     
            Evaluate the offspring schedule to count the total number of registrations     
        End-of-N-parent schedules 
        Select N best schedules to be the next parent schedules from N (parents) + N (offspring) schedules 
    End-of-G-number-of-Generations 
    Find the best schedule from G generations 
End-of-T-Trials 
Find the best schedule from the T Trials 

3 
 



The above algorithm selects a time slot from all valid time slots using a uniform random number. As a 
simple change to the above algorithm, the following algorithm selects a time slot from the most popular 
dayparts from all students if the daypart is instructor’s choice.   

 

ES(N+N) with Highest Votes 

GET student and faculty preferences from database 
Repeat T (Trial) times 
    Generate & Evaluate N random parent schedules 
    Repeat G (Generation) times      
        For each parent schedules 
            For each course in the parent schedule 
                Randomly select a class-time considering both faculty and students’ preference with highest votes  
                as well as scheduling constraints; // Mutation 
            End-of-processing-all-the-courses     
            Evaluate the offspring schedule to count the total number of registrations     
        End-of-N-parent schedules 
        Select N best schedules to be the next parent schedules from N (parents) + N (offspring) schedules 
    End-of-G-number-of-Generations 
    Find the best schedule from G generations 
End-of-T-Trials 
Find the best schedule from the T Trials 
 
 
The above 2 algorithms employ only mutation operators. The following algorithm based on ES(N+N) 
introduces a simple crossover operator that exchanges a time slot information between parent and 
offspring schedules at a randomly chosen course. 
 
 

ES(N+N) with Crossover 

GET student and faculty preferences from database 
Repeat T (Trial) times 
    Generate & Evaluate N random parent schedules 
    Repeat G (Generation) times      
        For each parent schedules 
            For each course in the parent schedule 
                Randomly select a class-time considering both faculty and students’ preference as well as scheduling constraints; 
                Interchange a class-time between parent schedule and child schedule of a randomly chosen course  
            End-of-processing-all-the-courses     
            Re-Evaluate parent schedules to count the total number of registrations 
            Evaluate the offspring schedule to count the total number of registrations     
        End-of-N-parent schedules 
        Select N best schedules to be the next parent schedules from N (parents) + N (offspring) schedules 
    End-of-G-number-of-Generations 
    Find the best schedule from G generations 
End-of-T-Trials 
Find the best schedule from the T Trials 
 
 
 
The following algorithm introduces popular Dayparts with highest votes for mutation operation to the 
above ES(N+N) with Crossover algorithms. 
 

4 
 



ES(N+N) with Crossover & Highest Votes 

GET student and faculty preferences from database 
Repeat T (Trial) times 
    Generate & Evaluate N random parent schedules 
    Repeat G (Generation) times      
        For each parent schedules 
            For each course in the parent schedule 
                Randomly select a class-time considering both faculty and students’ preference with highest votes  
                as well as scheduling constraints; 
                Interchange a class-time between parent schedule and child schedule of a randomly chosen course  
            End-of-processing-all-the-courses     
            Re-Evaluate parent schedules to count the total number of registrations 
            Evaluate the offspring schedule to count the total number of registrations     
        End-of-N-parent schedules 
        Select N best schedules to be the next parent schedules from N (parents) + N (offspring) schedules 
    End-of-G-number-of-Generations 
    Find the best schedule from G generations 
End-of-T-Trials 
Find the best schedule from the T Trials 
 
The inventor of ES, Rechenberg suggested a simple rule called 1/5 success rule [3] in 1971 to improve 
the evolutionary search using the previous performance data in the past generations. The general idea of 
the 1/5 rule is to increase mutation rate if the mutation worked well (over 20% successes0 in the past g 
number of generations. If not, decrease the mutation rate. The following algorithm is an implementation of 
this idea to the ES(N+N) version. 
 
 

ES(N+N) with 1/5 rule 

GET student and faculty preferences from database 
Repeat T (Trial) times 
    Generate & Evaluate N random parent schedules 
    Success_Rate = 0; 
    Repeat G (Generation) times      
        For each parent schedules 
            For each course in the parent schedule // mutation 
                 If Success_Rate is better than 20% 
                     Randomly select a class-time considering both faculty and students’ preference as well as  
                     scheduling constraints 
  Else 
      Randomly select a class-time considering both faculty and students’ preference as well as    
                     scheduling constraints, only when tossed coin is head.  
                     (The chance of mutating the class-time is 50% -- decreasing mutation rate)  
                 End-If 
            End-of-processing-all-the-courses     
            Evaluate the offspring schedule to count the total number of registrations 
        End-of-N-parent schedules 
        Update Success_Rate; 
        Select N best schedules to be the next parent schedules from N (parents) + N (offspring) schedules 
    End-of-G-number-of-Generations 
    Find the best schedule from G generations 
End-of-T-Trials 
Find the best schedule from the T Trials 
 

5 
 



The following algorithm introduces popular dayparts (with highest votes) for mutation operation to the 
above ES(N+N) with 1/5 rule algorithms. 
 
ES(N+N) with 1/5 rule & Highest Votes 

GET student and faculty preferences from database 
Repeat T (Trial) times 
    Generate & Evaluate N random parent schedules 
    Success_Rate = 0; 
    Repeat G (Generation) times      
        For each parent schedules 
            For each course in the parent schedule // mutation 
                 If Success_Rate is better than 20% 
                     Randomly select a class-time considering both faculty and students’ preference with highest votes as well as  
                     scheduling constraints 
  Else 
      Randomly select a class-time considering both faculty and students’ preference with highest votes as well as    
                     scheduling constraints, only when tossed coin is head.  
                     (The chance of mutating the class-time is 50% -- decreasing mutation rate)  
                 End-If 
            End-of-processing-all-the-courses     
            Evaluate the offspring schedule to count the total number of registrations 
        End-of-N-parent schedules 
        Update Success_Rate; 
        Select N best schedules to be the next parent schedules from N (parents) + N (offspring) schedules 
    End-of-G-number-of-Generations 
    Find the best schedule from G generations 
End-of-T-Trials 
Find the best schedule from the T Trials 
 

Before testing with large number of classes and students, we also developed an exhaustive search 
algorithm shown below to verify the correctness of the six ES algorithms with a small search space. In this 
algorithm, all the possible schedules are generated for given number of courses based on the faculty 
preferences. 

Exhaustive Search 

GET faculty preferences from the database 
For all the available courses 
    Permutate the faculty preferred timeslots with each course; 
Generate all the possible schedules with the permutated lists using recursion  
Evaluate all the generated schedules and find the first best schedule with the highest evaluation count 
 

Test Methods and Results 
In order to test our ES algorithms in a larger search space, the following parameter values were used. A 
program is written to randomly generate data for 400 students with three courses and three preferred 
daypart slots. 

N (number of parents, number of offspring) = 10 
T (number of Trials) = 20 
G (number of generations in the evolution process) = 1000 
C (number of courses) = 20 
t (number of time slots) = 11 

6 
 



P (number of professors) = 11 
S (number of students) = 400 

 

 

The above graph summarizes the results of six Evolution Strategy algorithms. The X-axis of the graph 
represents the number of generations and the Y-axis represents the number of student enrollments. The 
best result was 176 enrollments from “ES (N+N) with 1/5 rule” algorithm as seen in green line in the 
graph. 

We think best schedule of the generation one is equivalent to the manual approach that we are doing to 
prepare course schedules manually. The average value of the generation one from the six algorithms 
were 132.3. Since the best enrollment count from the six ES algorithms was 176, this research found an 
algorithm, ES (N+N) with 1/5 rule, that can achieve 33% improvement in course enrollment. 

Summary & Conclusion 
In this research, a course schedule optimization framework to include faculty and students’ preferred 
class time slots is introduced and six evolutionary algorithms are developed to find a valid schedule that 
satisfies time preferences of both instructor and students, eliminates time conflicts, and maximizes total 
number of enrollments for a University. Testing results clearly show that this system is applicable to find 
better schedules that increase the number of course registrations for a University. In addition, it is 
worthwhile to note that our system can simplify & revolutionize course registration processes, since it 
requires for students to specify only courses to take and his or her available day and dayparts. Our 
system will automatically assign courses to actual class time slot without time conflicts for each students.  
 
Future work includes:  

1. Considering multiple lectures per week. Current algorithm assumes only one lecture per week.  
2. Handling courses with multiple instructors.  
3. Considering online classes that does not have fixed meeting time.  

7 
 



4. Generation of a list of students who have classes that were not registered due to instructors’ 
class-time preferences.  

5. Considering class priorities set by students in generating course schedules.  
6. Improving crossover operator since the current version is mating between a parent and its child. 

Traditional crossover operators mate between parent individuals.  
7. Improving 1/5 rule algorithms since the current version is using only two cases of mutation rates 

when changing class time slot of a course, 100% or 50%.  
 

Acknowledgement 
Faculty Advisor: CJ ChanJin Chung 
cchung@ltu.edu  

 

References 
[1] Tomas B. George, Vitaliy Opalikhin and ChanJin Chung, “Using Evolution Strategy for a 

University Timetabling System with a Web based interface to gather real student data", 
Proceedings of GECCO (Genetic and Evolutionary Computation Conference) 2003, Editor: Bart 
Rylander, Chicago, Illinois, July 12-16, pp. 107-113. 

[2] Even, S., Itai, A., Shamir, A.: On the Complexity of Timetable and Multicommodity Flow 
Problems. SIAM Journal of Computing. Vol. 5. No. 4. (1976) 691-703  

[3] Hans-Paul Schwefel: Evolution and Optimum Seeking: New York: Wiley & Sons 1995. 

8 
 

mailto:cchung@ltu.edu

	Sindhu Jampani
	Lawrence Technological University

	sjampani@ltu.edu
	Faculty Advisor: CJ ChanJin Chung
	cchung@ltu.edu


