
Teaching Cars to Steer Themselves With Deep
Learning

Ian Timmis, Nicholas Paul, CJ Chung
Department of Mathematics and Computer Science

Lawrence Technological University

Abstract

Traditional approaches for steering a vehicle using machine vision
require large amounts of robust hand-crafted software which is both
time consuming and expensive. The presented method uses a deep
neural network to teach cars to steer themselves without any addi-
tional software. We created a labeled dataset for the ACTor (Au-
tonomous Campus TranspORt) electric vehicle by pairing real world
images taken during a drive with the associated steering wheel angle.
We trained a model end to end using modern deep learning tech-
niques including convolutional neural networks and transfer learning
to automatically detect relevant features in the input and provide a
predicted output. This means that no traditional hand engineered
algorithm features were required for this implementation. We cur-
rently use an pretrained inception network on the ImageNet dataset
to leverage the high level features learned from ImageNet to the steer-
ing problem through transfer learning. We removed the top portion
of the network and replaced it with a linear regression node to provide
the output. The model is trained end to end using backpropagation.
The trained model is integrated with vehicle software on ROS (Robot
Operating System) to read image data and provide a corresponding
steering angle in real time. The current model achieves 15.2 degree er-
ror on average. As development continues the model may replace the
current lane centering software and will be used for IGVC Self-Drive
competition and campus transportation.

1



Figure 1: Sample images and steering wheel angles used for training the
nework

Figure 2: The training process

1 Data Acquisition

The model uses an end-to-end architecture which means that the neural
network is responsible for converting an input image from the dashboard
camera directly into a steering wheel command. In order to collect training
data, a ROS node was added to the existing ACTor Autonomous System that
recorded a frame from the dashboard camera as well as a steering wheel angle
from the drive-by-wire vehicle reporting subsystem. The node was simple to
add due to the modular framework of the existing system.

2



Figure 3: Network architecture

Fig. 1 shows a few examples of images and corresponding steering wheel
angles. The data collection node captured new images and angles about 15
times per second over several routes on campus for a total of a few thousand
data points.

ACTor was driven around several roads on campus to collect a large range
of steering angles. Locations with many turns were selected to reduce bias
toward driving straight. Additionally, routes were driven in both directions
to reduce bias for steering in only one direction

2 Development

We developed this model using the Python programming language with the
TensorFlow and Keras deep learning libraries. The model was trained on the

3



FloydHub cloud computing service to utilize the speedup acquired by using
GPU for deep learning. GPU has become the primary way of training deep
learning models because they can massively parallelize the computations over
all its cores. Deep neural networks are able to be parallelized because of they
are largely comprised of matrix operations. Operations can be computed on
multiple elements of a matrix simultaneously. Training took approximately
3 hours to complete.

We use a 60/20/20 split on our 4600 image dataset into a training set,
validation set, and test set. By using both a validation and a test set to
evaluate our model, we can greatly increase our confidence that the model
will generalize well and not overfit the test set. The labels are converted
from radians into degrees before being used to facilitate the use of our loss
function. All of the pixel values are scaled to values between 0..1 using
MinMax normalization.

We utilize a Convolutional Neural Network (Inceptionv3) pretrained on
the ImageNet dataset as the base of our model. We remove the logistic layers
specific to the ImageNet vision problem and replace them with our own 1024-
neuron fully connected layer followed by a linear regression node to predict
the steering wheel angle. When training the model, we transfer knowledge
from the steering problem to this model through stages of Transfer Learning
and Fine-Tuning [2]. We train the model stochastically using the gradient
based optimization algorithm, Adam, to minimize the Mean Squared Error of
predicted outputs. We utilize Early Stopping to stop training when learning
has stagnated. To ensure that the minimum loss is selected for, we also utilize
Model Checkpointing to make sure the best weights are saved.

3 Integration

The deep learning subsystem is integrated in two ways: data acquisition and
model evaluation. These functions interact with the ACTor system indepen-
dently of one another. First, the data collection node is used to collect data
for training (See section Data Acquisition). The training data is used by
custom training software independent of the vehicle entirely. This software
outputs a model file which contains the parameters for the deep neural net-
work. Finally, the model is loaded onto the vehicle by the steering node (Fig.
4) which captures an image from the dashboard camera, evaluates the model
on the image, and then outputs a steering angle in real time. The steering

4



Figure 4: Integration of the network into the existing autonomous vehicle
system

Figure 5: Validation loss

angle will sent to the steering wheel driver of the drive by wire subsystem.

5



Figure 6: The network is able to determine the correct steering angle to
correctly follow the curved road

4 Results

After training the model, we find that it achieves a test loss of 233 which
equates to the predicted steering angle yielding 15.2 degrees of error on av-
erage (Fig 5). A video of running the network in a real-time system can be
found here1. Testing shows that the vehicle is able to follow the roadway
for the most part. It is often confused near branching paths such as drive-
ways but is generally able to correctly follow the curvature of the road. We
speculate that gathering more data will help greatly reduce the error of our
model. Additionally, we plan to use a recurrent neural network intsead of
the current state-less approach to achieve even better and more consistent
test results.

1https://youtu.be/Okjwd1dms9A

6


