
Teaching Cars to Steer Themselves
With Deep Learning

Ian Timmis, Nicholas Paul, CJ Chung
College of Arts and Sciences, Lawrence Technological University

Dataset
Human driver collects road 
images & desired steering 
wheel angles in real-time by 
driving

CNN
Training on a Cloud with 

GPU

Trained CNN 
integrated with vehicle 

control software

to read image data and 
provide a corresponding 
steering angle in real time. 

INTRODUCTION
Traditional approaches for steering a vehicle using machine vision require 

large amounts of robust hand-crafted software which is both time consuming and 
expensive. The presented method uses a deep neural network to teach cars to steer 
themselves without any additional software. We created a labeled dataset for the 
ACTor (Autonomous Campus TranspORt) electric vehicle [1] by pairing real world 
images taken during a drive with the associated steering wheel angle. We trained a 
model end to end using modern deep learning techniques including convolutional 
neural networks and transfer learning [2] to automatically detect relevant features in 
the input and provide a predicted output. This means that no traditional hand 
engineered algorithm features were required for this implementation. We currently 
use an pretrained inception network on the ImageNet dataset to leverage the high 
level features learned from ImageNet to the steering problem through transfer 
learning. We removed the top portion of the network and replaced it with a linear 
regression node to provide the output. The model is trained end to end using 
backpropagation. The trained model is integrated with vehicle software on ROS 
(Robot Operating System) [3] to read image data and provide a corresponding 
steering angle in real time. The current model achieves 15.2 degree error on 
average. As development continues the model may replace the current lane 
centering software and will be used for IGVC Self-Drive competition and campus 
transportation. Fig. 1 shows the training process.

ALGORITHM RESULTS

DATA ACQUISITION DEVELOPMENT INTEGRATION
We developed this model using the Python 

programming language with the TensorFlow and Keras 
deep learning libraries. The model was trained on the 
FloydHub cloud computing service to utilize the speedup 
acquired by using GPU for deep learning. GPU has 
become the primary way of training deep learning 
models because they can massively parallelize the 
computations over all it’s cores. Deep neural networks 
are able to be parallelized because of they are largely 
comprised of matrix operations. Operations can be 
computed on multiple elements of a matrix 
simultaneously. Training took approximately 3 hours to 
complete.

We use a 60/20/20 split on our 4600 image dataset 
into a training set, validation set, and test set. By using 
both a validation and a test set to evaluate our model, we 
can greatly increase our confidence that the model will 
generalize well and not overfit the test set. The labels are 
converted from radians into degrees before being used 
to facilitate the use of our loss function. All of the pixel 
values are scaled to values between 0 and 1 using 
MinMax normalization.

We utilize a Convolutional Neural Network 
(Inceptionv3) pretrained on the ImageNet dataset as the 
base of our model. We remove the logistic layers specific 
to the ImageNet vision problem and replace them with 
our own 1024-neuron fully connected layer followed by a 
linear regression node to predict the steering wheel 
angle. When training the model, we transfer knowledge 
from the steering problem to this model through stages 
of Transfer Learning and Fine-Tuning [2]. We train the 
model stochastically using the gradient based 
optimization algorithm, Adam, to minimize the Mean 
Squared Error of predicted outputs. We utilize Early 
Stopping to stop training when learning has stagnated. 
To ensure that the minimum loss is selected for, we also 
utilize Model Checkpointing to make sure the best 
weights are saved.

After training the model, we find that it achieves a 
test loss of ~233 which equates to the predicted steering 
angle yielding ~15.2 degrees of error on average. We 
speculate that gathering more data will help greatly 
reduce the error of our model.

The model uses an end-to-end architecture which 
means that the neural network is responsible for 
converting an input image from the dashboard camera 
directly into a steering wheel command. In order to 
collect training data, a ROS node was added to the 
existing ACTor Autonomous System that recorded a 
frame from the dashboard camera as well as a steering 
wheel angle from the drive-by-wire vehicle reporting 
subsystem. (See Fig. 3). The node was simple to add 
due to the modular framework of the existing system [1]. 

Fig. 2 shows a few examples of images and 
corresponding steering wheel angles. The data collection 
node captured new images and angles about 15 times 
per second over several routes on campus for a total of a 
few thousand data points. 

ACTor was driven around several roads on 
campus to collect a large range of steering angles. 
Locations with many turns were selected to reduce bias 
toward driving straight. Additionally, routes were driven in 
both directions to reduce bias for steering in only one 
direction. 

The deep learning subsystem is integrated in two 
ways: data acquisition and model evaluation. These 
functions interact with the ACTor system independently 
of one another. First, the data collection node is used to 
collect data for training (See section “Data Acquisition”). 
The training data is used by custom training software 
independent of the vehicle entirely. This software outputs 
a model file which contains the parameters for the deep 
neural network. Finally, the model is loaded onto the 
vehicle by the steering node (Fig. 3) which captures an 
image from the dashboard camera, evaluates the model 
on the image, and then outputs a steering angle in real 
time. The steering angle is sent to the steering wheel 
driver of the drive by wire subsystem. 

Fig 1. Training Process Fig 2. Training Examples Fig 3. ROS Integration

Fig 4. Network Architecture Fig 5. Validation Loss

[1] Nicholas Paul, et al., A Practical, Modular, and Adaptable Autonomous Vehicle Research Platform,
IEEE International Conference on Electro Information Technology 2018 (in review)

[2] Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. 2016.

[3] Quigley, Morgan, et al. “ROS: an open-source Robot Operating System.” ICRA workshop on open source 
software. Vol. 3. No. 3.2. 2009.


	Slide Number 1

