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Abstract. We developed an algorithm which can classify breast cancer histology 
images between four different categories achieving an accuracy exceeding highly 
specialized pathologists and any previous state of the art software. Those four 
categories being normal, benign abnormality, carcinoma in situ and invasive car-
cinoma. We ensemble an Inception-v3 Network, a 50-layer Residual Network 
and an Xception Network each pre-trained on ImageNet with custom logistic lay-
ers to define our network. We perform patch-wise training on the algorithm and 
then use a majority vote on the patch-wise predictions to output the image-wise 
prediction. We utilize modern deep learning concepts such as Transfer Learning 
to leverage the nuanced features learned from ImageNet. We achieve 97.5% ac-
curacy on the test set. 
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1 Introduction 

About 12.4% of U.S. women will develop invasive breast cancer in her lifetime. In 
2018 it is estimated in the U.S. that 226,120 new cases of invasive breast cancer will 
be diagnosed in women and 2,550 new cases of invasive breast cancer will be diagnosed 
in men [1]. This does not include the estimated 63,960 cases of non-invasive (in situ) 
breast cancer that will be diagnosed in women this year. In the U.S. 40,920 women are 
expected to die in 2018 from breast cancer [1]. However, since 1989 there has been a 
decrease in the death rates. These decreases are thought to have partly occurred as the 
result of earlier detection [1]. As earlier detections have resulted in the decrease in death 
rates for almost three decades, it is clear that accurate classification is essential. Breast 
cancer can be diagnosed through the examination of biopsy tissue with hematoxylin 
and eosin (H&E) stained images. A study on U.S. pathologists showed an overall diag-
nostic concordance rate of 75.3% in which diagnostic interpretation was based on a 
single breast biopsy slide [2]. Interpreting histology images manually is a non-trivial 
task for specialized pathologists and motivate the use of Convolutional Neural Net-
works to discover patterns in the visual structure of these images for classification. In 
section 2, prior work done by computer vision and Artificial Intelligence experts is 
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introduced. Section 3 describes how our breast cancer image dataset is structured and 
preprocessed. Convolutional neural architecture of this study is explained in Section 4, 
followed by results and conclusion in section 5. 

 
 

2 Prior work 

Computer vision experts and machine learning practitioners have worked on auto-
matically classifying H&E stained breast histology microscopy images for a long time. 
There are many examples of previous works attempting to do binary classification on 
this type of data. So far, these approaches have successfully reached over 90% accuracy 
on binary malignant-benign classification. Many of these have been outlined in the 
Arau’jo et al. paper [3]. In this paper, we are going to focus specifically on the Arau'jo 
et al. work as the prior work as we take this problem further and perform multiclass 
classification. Arau’jo et al. reports they achieved 77.8% accuracy for multiclass clas-
sification of the breast cancer histology images on two approaches they used to solve 
this problem. Each of their solutions utilized Convolutional Neural Networks (CNN) to 
solve this problem, however, one of them used a Support Vector Machine (SVM) as 
the final layer. 

3 Input Dataset  

The dataset described in this paper was released by the International Conference on 
Image Analysis and Recognition (ICIAR) 2018 challenge hosted by the Association for 
Image and Machine Intelligence (AIMI). The dataset provided includes 400 Hematox-
ylin and eosin (H&E) stained breast histology microscopy images. The large high def-
inition images are of size 1536 × 2048 pixels. They were acquired with magnification 
of 200x and pixel size of 0.42μm × 0.42μm [4]. The images are equally distributed 
among all classes. We use a 90/10 split between the train and test set. This results in a 
360-image training set and a 40-image testing set. 

3.1 Preprocessing 

Before analyzing the data, the images need to be normalized. Data normalization is 
used to ensure that the input parameters have a similar data distribution. This leads to 
faster convergence during training. The images are normalized by applying the min-
max normalization technique to the raw pixel values.  
 

𝑧𝑧 =
𝑥𝑥 − min (𝑥𝑥)

max(𝑥𝑥) − min (𝑥𝑥)
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The resulting pixel values are scaled to values between 0 and 1. The corresponding 
labels for each image are also transformed into categorical data through one-hot encod-
ing. 

3.2 Image Segmentation 

The images are segmented into 48 separate image patches of size 256x256 (6 rows x 8 
columns). There are two main motivations for this. The first motivation is to increase 
the dataset from 400 images to 19,200 images. The second motivation is for smaller 
image size training examples. Neural Networks have trouble classifying large high-
resolution images. Conversely, Neural Networks are better equipped to recognize pat-
terns in smaller pieces of data. Each of the image patches is labeled with the original 
image’s ground truth label. In theory, this may cause some patches to be mislabeled, 
but this will not harm performance and will be explained in further detail in section 4.4. 
The previous work segmented the images into 512x512 patches with 50% overlap. In 
our work, we discover that using patches of size 256x256 is adequate for finding rele-
vant visual structures for high performance classification.  

4 Method 

4.1 Problem Formulation 

The task of breast cancer detection is a multiclass classification problem, where the 
input is a 256x256 patch of a breast cancer histology image 𝑋𝑋 and a label 𝑌𝑌 ∈
 { 1, 2, 3, 4 } before one-hot encoding indicating whether the image contains normal 
tissue, benign abnormality, carcinoma in situ or invasive carcinoma respectively. For 
a single example in the training set, we minimize the categorical cross entropy loss  
 

𝐻𝐻(𝑝𝑝, 𝑞𝑞) =  −� 𝑝𝑝(𝑥𝑥) log�𝑞𝑞(𝑥𝑥)�
𝑥𝑥

, 

 
where 𝑝𝑝 is the matrix containing the ground truth distributions and 𝑞𝑞 is the matrix of 
approximate label distributions.  

4.2 Network Architecture 

The proposed algorithm utilizes 3 different CNN architectures. The 3 networks include 
an Inception-v3 Network [5], a 50-layer Residual Network [6] and an Xception Net-
work [7]. Each of these networks are initialized with weights from networks pre-trained 
on the ImageNet dataset [8]. The three networks were specifically chosen because of 
their exceptional scores on the ImageNet dataset and the ease of setup using the Keras 
programming framework [9]. We remove the fully connected layer at the end of each 
of the network. The removed fully connected layer is then replaced with a 1024-neuron 
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fully connected layer using the Rectified Linear Unit (ReLU) activation function [10] 
followed by a 4 unit softmax layer for classification. 

4.3 Training 

To utilize the pre-trained weights learned from the ImageNet dataset, we utilize the 
idea of Transfer Learning [11]. We transfer useful knowledge from the ImageNet do-
main to the breast cancer classification domain through 2 steps of training.  

In the first step of training, also called Transfer Learning, begins with “freezing” the 
original layers of the network so that the weights learned from ImageNet are not up-
dated during backpropagation. The network is then trained using Adam optimization 
technique with standard parameters (β1 = 0.9 and β2 = 0.999) [12]. 

The second step of training is called “Fine-Tuning.” During this stage we “unfreeze” 
several of the topmost layers and train the network using Stochastic Gradient Descent 
with Momentum using custom parameters (α = 0.0001, γ = 0.9) [13]. The Inception-v3 
Network, the 50-layer Residual Network and the Xception Network were unfrozen 
from the 249th, 140th and 126th layer respectively. It is important to note that these num-
bers are based off of the Keras implementation in which the total layer count includes 
layers that have non-learnable parameters (E.g. max pooling, batch normalization, 
dropout, etc.) as well as the layers with learnable parameters (E.g. convolutional and 
fully connected layers). 

Each of the training steps utilized a mini-batch size of 16, model check pointing and 
early stopping. The Inception-v3 Network, the Xception Network and the 50-layer Re-
sidual Network achieved 84.9%, 84.84% and 85.1% accuracy respectively on patch-
wise classification. 

4.4 Ensemble 

The 3 CNNs predictions are then input to our ensemble algorithm 
 

𝑝𝑝 = (𝑖𝑖 + 𝑥𝑥 + 𝑟𝑟)⨀1
3
, 

 
where 𝑖𝑖, 𝑥𝑥 and 𝑟𝑟 each represent a 4-dimensional vector containing the probabilities of 
each class prediction of the Inception-v3 Network, Xception Network and 50-layer 
Residual Network respectively. 𝑝𝑝 is the resulting 4-dimensional patch-wise prediction 
vector. visual representation can be seen in Figure 1. 
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Fig. 1. The ensemble predictions calculated with the model predictions of each CNN  

4.5 Image-Wise Classification 

Once all ensemble predictions for the 48 patches have been calculated, we then exe-
cute the majority vote algorithm on the ensemble predictions 
 

𝑌𝑌� = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥(∑ 𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜(𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥(𝑃𝑃𝑖𝑖)
𝑛𝑛𝑝𝑝
𝑖𝑖=0 )), 

 
where P represents a 4x48 dimensional matrix containing the patch-wise prediction 
vector for each patch of the image, and 𝑜𝑜𝑝𝑝 represents the number of patches. The Image-
wise classification process can be seen in Figure 2. 
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Fig. 2. The network comes to a consensus for full-image classification using a majority vote 
algorithm. 

5 Results and Conclusion 

The results of our algorithm are evaluated on classification accuracy. We determine the 
patch-wise classification accuracy for each of our individual networks as well as the 
Image-wise classification accuracy of our ensembled model. We compare our results 
directly with those of the prior work and can be seen in Table 1. Note that the patch-
wise classification column represents 512x512 patches for the Arau’jo et al. experi-
ments and 256x256 patches for our experiments. 

We achieved an accuracy (97.5%) exceeding highly specialized pathologists 
and any previous state of the art software. We think this is due to (1) appropriate patch 
size, (2) ensemble of well-chosen CNN architectures and parameters, and (3) utilizing 
modern deep learning concepts such as Transfer Learning to leverage the nuanced fea-
tures learned from ImageNet. 

Future work for this project includes the analysis of any misclassification 
cases, testing on alternative consensus algorithms for image-wise classification other 
than the majority vote algorithm described earlier, testing with alternative image seg-
mentation sizes and overlap, weighted ensembling based on patch-wise accuracy, the 
potential addition of other CNNs in the ensemble and further hyperparameter tuning. 

Table 1. Accuracy of methods on the test set. 

Research Group Method 
Patch-wise multiclass 
classification accuracy 

Image-wise multiclass 
classification accuracy 

Arau’jo et al. 
CNN 66.7% 77.8% 
CNN with SVM 65% 77.8% 

Timmis 
Inception-v3 84.9% 

97.5% Xception 84.84% 
ResNet50 85.1% 
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