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1 Introduction 

1.1 Overview 

Object detection is considered to be the most basic application of computer vision. 

Rest of the other developments in computer vision are achieved by making small 

enhancements on top of this. In real life, every time we(humans) open our eyes, we 

unconsciously detect objects. Deep learning allows computational models of multiple 

processing layers to learn and represent data with multiple levels of abstraction 

mimicking how the brain perceives and understands multimodal information. Deep 

learning is a specific subset of Machine Learning, which is a specific subset of 

Artificial Intelligence. The power of artificial intelligence is beyond our imagination. 

Moreover, Autonomous cars have been a topic of increasing interest in recent years as 

many companies are actively developing related hardware and software technologies 

toward fully autonomous driving capability with no human intervention. Deep 

Learning is one way of doing that, using a specific algorithm called a Neural Network 

it also powers some of the most interesting applications in the world, The core to many 

of these applications are visual recognition tasks such as image classification, 

localization and detection. The main difference between machine learning and deep 

learning is the depth to which the system can autonomously teach itself. When machine 

learning uses features from input (from training data) and makes predictions based on 

a single or a few layers of nodes, a deep neural network contains many hidden layers 

that adds new features and exceeds human coding capacity. This makes deep learning 

more powerful for complex computing tasks such as object recognition. Noteworthy is 

the improvement of deep learning using a convolutional neural network, where the 

input is the whole image and thus embeds feature extraction. Its mapping between 

features and actions is established during training. 
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2. Preparing the Input (the training data): 

Our dataset contains 398 images for objects classified as (Blue cup, Bottle, Mallet, Hammer, 

Tape, Scissors Red, Scissors Black, Mug, Pliers and Spray Bottle) containing two subsets: a 

training set with 300 samples and a validation set with 98 samples witch has been used 

for training our model and finally a test set with 10 unseen samples for prediction. Some 

image as shown in Fig 1. 

 
  

 Blue Cup  
Training:25 
Validation:8 

Bottle   
 Training:50 
Validation:15 

Mallet  
Training:25 
Validation:9 

Pliers 
Training:29 
Validation:6 

Fig 1. Show some image used 

Hammer  
Training:20 
Validation:8  

Mug 
Training:26 
Validation:10 

Scissors Black 
Training:30 
Validation:8 

Scissors Red 
Training:28 
Validation:7 

Spray Bottle 
Training:50 
Validation:12 

  Tape 
Training:17 
Validation:7 
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3 Methods 

I used pre-trained models in order to help me in the experiment as shown in Diagram 1. 

The pre-trained models are trained on very large scale image classification problems. The 

convolutional layers act as feature extractor and the fully connected layers act as 

Classifiers.with 2D convolutional layers on a pre-trained model where the first layers are 

blocked from training and then trained the last two layers with the small data. The strategy 

is to not only replace and retrain the classifier on top of the ConvNet on the new dataset, 

but to also fine-tune the weights of the pretrained network by continuing the 

backpropagation. It is possible to fine-tune all the layers of the ConvNet, or it’s possible to 

keep some of the earlier layers fixed (due to overfitting concerns) and only fine-tune some 

higher-level portion of the network. This is motivated by the observation that the earlier 

features of a ConvNet contain more generic features (e.g. edge detectors or color blob 

detectors) that should be useful to many tasks, but later layers of the ConvNet becomes 

progressively more specific to the details of the classes contained in the original dataset.   

 
 
 

  
Diagram 1. Show The Processing  
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3.1 Load the pre-trained model 

The VGG16 model was developed by Karen Simonyan and Andrew Zisserman in 2014, a 

simple and widely used convnet architecture for ImageNet. Although it is a bit of an older 

model, far from the current state of the art and somewhat heavier than many other recent 

models, we chose it because its architecture is similar to what you are already familiar with. 

 among others, comes pre-packaged with Keras. We can import it from 

the keras.applications module. This model is trained on more than a million images and 

can classify images into 1000 object categories. For example, keyboard, mouse, pencil, and 

many animals. As a result, the model has learned rich feature representations for a wide 

range of images. It has 13 convolutional layers followed by rectification and pooling layers, 

and 3 fully connected layers. All convolutional layers use small 3 × 3 filters and the 

network performs only 2 × 2 pooling. VGG-16 has a receptive field of size 224 × 224.  

 

 
import keras 
keras.__version__ 
 
from keras.applications import VGG16 
 
conv_base = VGG16(weights='imagenet', 
                  include_top=False, 
                  input_shape=(150, 150, 3)) 
 

In the above code, we load the VGG16 Model. There is one change – include_top=False. 

We have not loaded the last two fully connected layers which act as the classifier. We are 

just loading the convolutional layers.  
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3.2 Extract Features 

Our data is divided into 80:20 ratio and kept in separate train and validation folders. Each 

folder should contain 10 folders belonging to the respective classes.  

 
img_width, img_height = 150, 150 
 
train_dir = '/vccmain1/test' 
validation_dir = '/vccmain1/val' 
test_dir = '/vcctest1/' 
train_tape_dir = '/vccmain1/test/tape'  
nb_train_samples = 300 
nb_validation_samples = 98 
batch_size =16 

 
It should be noted that the last layer has a shape of 4 x 4 x 512.To look at how the 
dimensions of the feature maps change with every successive layer 
conv_base.summary() 
_______________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
input_1 (InputLayer)         (None, 150, 150, 3)       0          
_________________________________________________________________ 
block1_conv1 (Conv2D)        (None, 150, 150, 64)      1792       
_________________________________________________________________ 
block1_conv2 (Conv2D)        (None, 150, 150, 64)      36928      
_________________________________________________________________ 
block1_pool (MaxPooling2D)   (None, 75, 75, 64)        0          
_________________________________________________________________ 
block2_conv1 (Conv2D)        (None, 75, 75, 128)       73856      
_________________________________________________________________ 
block2_conv2 (Conv2D)        (None, 75, 75, 128)       147584     
_________________________________________________________________ 
block2_pool (MaxPooling2D)   (None, 37, 37, 128)       0          
_________________________________________________________________ 
block3_conv1 (Conv2D)        (None, 37, 37, 256)       295168     
_________________________________________________________________ 
block3_conv2 (Conv2D)        (None, 37, 37, 256)       590080     
_________________________________________________________________ 
block3_conv3 (Conv2D)        (None, 37, 37, 256)       590080     
_________________________________________________________________ 
block3_pool (MaxPooling2D)   (None, 18, 18, 256)       0          
_________________________________________________________________ 
block4_conv1 (Conv2D)        (None, 18, 18, 512)       1180160    
_________________________________________________________________ 
block4_conv2 (Conv2D)        (None, 18, 18, 512)       2359808    
_________________________________________________________________ 
block4_conv3 (Conv2D)        (None, 18, 18, 512)       2359808    
_________________________________________________________________ 
block4_pool (MaxPooling2D)   (None, 9, 9, 512)         0          
_________________________________________________________________ 
block5_conv1 (Conv2D)        (None, 9, 9, 512)         2359808    
_________________________________________________________________ 
block5_conv2 (Conv2D)        (None, 9, 9, 512)         2359808    
_________________________________________________________________ 
block5_conv3 (Conv2D)        (None, 9, 9, 512)         2359808    
_________________________________________________________________ 
block5_pool (MaxPooling2D)   (None, 4, 4, 512)         0          
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================================================================= 
Total params: 14,714,688 
Trainable params: 14,714,688 
Non-trainable params: 0 

The convolutional base of VGG16 has 14,714,688 parameters, which is very large. The 

classifier we are adding on top has 2 million parameters. 

Before we compile and train our model, a very important thing to do is to freeze the 

convolutional base. "Freezing" a layer or set of layers means preventing their weights 

from getting updated during training. If we don't do this, then the representations that 

were previously learned by the convolutional base would get modified during training. 

Since the Dense layers on top are randomly initialized, very large weight updates would 

be propagated through the network, effectively destroying the representations previously 

learned. We will fine-tune the last 3 convolutional layers, which means that all layers up 

until block4_pool should be frozen, and the 

layers  block5_conv1,  block5_conv2  and block5_conv3 should be trainable. 

conv_base.trainable = True 
 
set_trainable = False 
for layer in conv_base.layers: 
    if layer.name == 'block5_conv1': 
        set_trainable = True 
    if set_trainable: 
        layer.trainable = True 
    else: 
        layer.trainable = False 
 

For our compilation step, I used the RMSprop optimizer. And we ended our network mod

el to predict multiple choices, the loss function to use in this case is categorical_crossentr

opy. It measures the distance between two probability distributions: in our case, between 

the probability distribution output by our network, and the true distribution of the labels. 

By minimizing the distance between these two distributions, we train our network to outp

ut something as close as possible to the true labels 

 

from keras import optimizers 
model.compile(loss='categorical_crossentropy', 
              optimizer=optimizers.RMSprop(lr=1e-4), 
              metrics=['acc']) 
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3.3 Data preprocessing 

The data should be formatted into appropriately pre-processed floating point tensors before 

being fed into our network. Decode the JPEG content to RBG grids of pixels. Convert these 

into floating point tensors. Rescale the pixel values (between 0 and 255) to the [0, 1] 

interval (as you know, neural networks prefer to deal with small input values). Keras has 

utilities to take care of these steps automatically. Keras has a module with image processing 

helper tools, located at keras.preprocessing.image. In particular, it contains the 

class ImageDataGenerator which allows to quickly set up Python generators that can 

automatically turn image files on disk into batches of pre-processed tensors. This is what I 

will use here. 

from keras.preprocessing.image import ImageDataGenerator 
train_datagen = ImageDataGenerator(zoom_range = 0.1, 

            rescale=1./255, 
                  height_shift_range = 0.1, 
                  width_shift_range = 0.1, 
                  rotation_range = 10) 
test_datagen = ImageDataGenerator(rescale=1. / 255) 
 
train_generator = train_datagen.flow_from_directory( 
      train_dir, 
    target_size=(img_width, img_height), 
    batch_size=batch_size, 
    class_mode='categorical') 
 
validation_generator = test_datagen.flow_from_directory( 
      validation_dir, 
      target_size=(img_width, img_height), 
      batch_size=batch_size, 
      class_mode='categorical') 
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3.4 Create the model 
 
I will create a simple feedforward network with a softmax output layer having 4 classes. 
  
from keras.models import Sequential 
from keras.layers import Conv2D, MaxPooling2D 
from keras.layers import Activation, Dropout, Flatten, Dense 
from keras import models 
from keras import layers 
 
if K.image_data_format() == 'channels_first': 
    input_shape = (3, img_width, img_height) 
else: 
    input_shape = (img_width, img_height, 3) 
 
model = models.Sequential() 
model.add(conv_base) 
model.add(layers.Flatten()) 
model.add(layers.Dense(128, activation='relu')) 
model.add(layers.Dense(10, activation='softmax')) 
 

 

Now we can start training our model, with the data augmentation configuration 
 
from keras import models 
history=model.fit_generator( 
        train_generator, 
        steps_per_epoch=nb_train_samples // batch_size, 
        epochs=30, 
        validation_data=validation_generator, 
        validation_steps=nb_validation_samples // batch_size) 

 
 

 
 

In order to save the model for future classification and prediction  

model.save('history.h5') 
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4 Results 

We quickly reach an accuracy of (85.0%) on the training data. Now let's check that our 

model performs well on the test set too: 

test_generator = test_datagen.flow_from_directory( 
        test_dir, 
        target_size=(150, 150), 
        batch_size=2, 
        class_mode='categorical') 
 
test_loss, test_acc = model.evaluate_generator(test_generator, steps
=50) 
print('test acc:', test_acc) 
 
test acc: 0.85 
 
 
 
 
import matplotlib.pyplot as plt 
acc = history.history['acc'] 
val_acc = history.history['val_acc'] 
loss = history.history['loss'] 
val_loss = history.history['val_loss'] 
epochs = range(len(acc)) 
plt.plot(epochs, acc, 'bo', label='Training acc') 
plt.plot(epochs, val_acc, 'b', label='Validation acc') 
plt.title('Training and validation accuracy') 
plt.legend() 
 
plt.figure() 
 
plt.plot(epochs, loss, 'bo', label='Training loss') 
plt.plot(epochs, val_loss, 'b', label='Validation loss') 
plt.title('Training and validation loss') 
plt.legend() 
 
plt.show() 
 
 
 
 
4.1 Check Performance(Prediction) 

We will use unseen images and would like to see if the model can get the right 

classification for them I upload new 6 images and here is the result. 

10 
 



 

 
 

 
  

11 
 



5 Conclusions 

 The results of this project show that Fine tune and deep learning are a viable 

approach to image analysis there are many exciting research directions that transfer 

learning offers and in particular many applications that are in need of models that can 

transfer knowledge to new tasks and adapt to new domains. we choose to only fine-tune 

the last convolutional block rather than the entire network in order to prevent overfitting, 

since the entire network would have a very large entropic capacity and thus a strong 

tendency to over fit. The features learned by low-level convolutional blocks are more 

general, less abstract than those found higher-up, so it is sensible to keep the first few 

blocks fixed (more general features) and only fine-tune the last one (more specialized 

features). Overall, the system gates the right prediction for the amount of epochs we used 

and only minimal data was proved. 
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