WSL (Windows Subsystem for Linux) / ROS (Robot
Operating System) Tutorial

ROS in WSL

Zhen Liu
Fall 2018

Lawrence Technological University
Computer Science

Contents

INStall UBUNTU fOr WINOOWScoeiiiiieeieeeie ettt ettt e e sre e e e s e sreeeneesneesaneenas 4
Ubuntu install 0f ROS KINELICueiiuiiiiie ettt et st 6
INSEAII ROS ...ttt ettt st b e bt et s et s b e e b e et e b e e s R e e bt e s bt e s et senesreenreenreeanenreen 6

200 o TS0 o] L= = RSP 7
ROS ENVIFONMENT ..ttt e s saa e s b e e et e e sabe e e sbaeessabaee e 11
2O R A VLo T < o - [S 12
NAVIZAte ROS FilESYSTEMeeiiiiii et e e e e e e e e e e e e s st e e e e sesnstaeeeeesnssneseneeeeensnnreneeas 13
Packages in @ Catkin WOrKSPaCeuuuvii it e e s e s e st e e e e e e e e e e snnneeeas 14
Create @ Catkin PACKae.....cuiii et e e e e e e e st e e e e e s ean e e e e e e s nnareeeeeeeeennnnrneeas 14
LU 1] o BT T 2 (O A o= 1ol = S 15

PIay With ROS NOGESccieiiieee ettt e e e ettt e e e e e e e e e e et e e e e e s saastaeeeeesnstaeeeeeannsnssneeesensnnsenneas 15
TaT 11 172 Yo Y=Y o o | o 2RSSR 15
1] o1 (o2 PO SOOUPPPPRE 16
(0] o] 11 o1 0= 48 o X T I e ol S 16
U] o XYl g1 o114 o I I o o 1ol S 18
ATCUINO SETUP ..uuvtiieeieieiitie e e ettt e e eerte et e e ees e eetaaeeeesestsaaeeeeesabaeaeeeseastrasaeeseasbasaeeseasssasssaeeeseannssaeseesennnsres 21
Download and INStall ArdUiNO IDEcc.coiiiiiiieiieie ittt e sre e 21
Add SErial WItE PEIMMISSIONSiieiivieeeeicectrtee e e ecet e e e e eeettre e e e e eetbreeeeeestaraeeeeessassseeeeeesssbassesareeeeensrraeeas 22
INStall ReIated LiDrariEs.....ccveviieeriieiiiiiiiesree et e s s neene e 22
Load Interface into ArdUiNO IDE.......cc.coouiiiiiieriieiie ettt sree e neeas 23
Identify YOUr Arduing BOArdcoiviieiiiiiiecieecries st sttee st stee e s sate e e saeee e ssataeessnteeesssne seeennnaeeennees 24
GAZEDO SIMUIGTION ..t s s e sr e r e e e s e e sreenne s 24
INStallation Of GAZEDO ...c..eiiiiiiiiciiic e e 24

N\ o Yo [T 7 La Y o] (=TT RPN 28
FOPWAI: ittt st et e a e st h e e saae b r e eare e 28
USINEG @ JOYSTICK 1ottt e e e e e et r e e e e e ebb e e e e e s e satbaaeeesenasraaeeeesseeeastaaeeeeeennsraneeas 34
(0010 0] o 10 L (=T g VA T (o] o ISP 39

£ o] o o1 TN o L1 OSSP 53
FOIOWING TINE ..ttt ettt s e e st e e st e e e sbte e s sabeeessbeaessa sabaeessabeeesnnsaeesnsens 63

Install Ubuntu for Windows

The wonderful Ubuntu terminal is freely available for Windows 10. The Ubuntu terminal for Windows
has many of the same features you'll find using the terminal on Ubuntu:

e Unrivalled breadth of packages, updates and security features

e Bash shell environments without virtual machines or dual-booting

e Run native tools such as SSH, git, apt and dpkg directly from your Windows computer

e Invoke Windows applications using a Unix-like command-line shell

e A huge community of friendly, approachable users

Before installing Ubuntu, you need to update Windows 10 to include the Windows 10 Fall Creator
update, released October 2017 (Windows build 16215 or later). This update includes the Windows
Subsystem for Linux (WSL) which is needed to run the Ubuntu terminal. To check your build, please

follow these steps:

1) Open Setting > System > About
2) Look for the OS Build and System Type fields.

= Settings

@ Home

System

[J Motifications & actions
4 Focus assist

™ Power & sleep

3 Battery

= Storage

8 Tablet mode

Hi Multitasking

&1 Projecting to this PC

7% Shared experiences

About

Device name

Processor

Installed RAM
Device ID 80-402B-E
Product ID

System type 64-bit rating system

Pen and touch

Rename this PC

Windows specifications

Edition Windows 10 Home
Version

Installed on

Also, you must make sure the Windows Subsystem for Linux optional feature is enabled.

1) Open Control Panel.

2) Click Programs and Features link.
3) Click Turn Windows features on or off link.

£F Control Panef\All Controd Panel Rems\Programs and Features

1) » Control Panel »

File Edit WView Tools

Control Pane! Home

View instalied updates

All Control Panel Items » Programs and Features

Uninstall or change a program

To uninstall a program, select it from the list and then click Uninstall, Change, of Repair.

' Tun Windows features an or
s Organize =

Name
1 Apple Application Suppornt (32-biY)

£ Apple Application Support (64-bit)

Il Adobe Acrobat Reader DC

& iCioud

4 Microsoft OneDrive

B Aobe Flath Player 31 PRARI

TWIMSXML 4.0 5P2 Parser and S

AP Mscroson Visual C++ 2013 Redistributable (d6) - 12..

1) Microsoft Office Professional Pius 2013 - en-us

AP Microsoft Visual C++ 2013 Redistributable (x64) - 12
‘| RoboRealm

13 - Lite Codec Pack 1420 Standard

fPMicrosont Visusl Cs + 2017 Redistributable (x64) - 14
1P Windows Sattware Development Kit - Windows 10.0.1.
BE¥ intel ® Control Center

3l Realtek High Definition Auio Driver

A Intel ® Graphics Driver

S Micresomt Visusl Co+ 2012 Redistributable (x86) - 11__
T p—y RV T TS

3
N_-....I Currently installed progra Tota size
d

2F| 190 programs instatle

Publither

Apple Inc.

Apple Inc.

Adobe Systems Incorporated
Apple Inc.

Microsoft Corporation
Adobe Systems Incarporated
Microsoft Corporation
Microsoft Corparation
Micrgsalt Corporation
Microsoft Corporation
RoboRealm, LLC

Lita]

Microsoft Corporation
Microsoft Corporation

Intel Corporation

Realek Semsconductor Corp.
Intel Corparation

Micrasaft Corporation

148G8

Installed On Size
2018
9202018
9/20/218
20208
Sn60e
K/12ms
B/2472018
B2arng
anaame
&27/2018
BZTANE
EN520E
512872018
5/26/2018
5/28/2018
S/26/2018
5282018
5282018

- o x
r
Version A
136MB 66
151M8 65
ITEME 18011.20063
151ME TAOIS

MOME 18151.0729.0006
S04M8 3100008

S04 ME 42058180
TTIME 120305010
270GE 15050451000
205M8 120305010
185M8 28718
12TMB 1420

234 ME 1410250080
114GE 10.1.05063.137
166 ME 1.21.1008
335MB B01TSEI
315ME 1018154279
17TAME 110511061

4) On “Windows Features”, check Windows Subsystem for Linux option.
Windows Features

Turn Windows features on or off

O X

To turn a feature on, select its check box. To turn a feature off, clear its check
box. A filled box means that only part of the feature is turned on.

£
O

Simple Network Management Protocol (SNMP)
Simple TCPIP services (i.e. echo, daytime etc)

53]

®H &

ROROmROOOO000

5) Click OK.

SMB 1.0/CIFS File Sharing Support
Telnet Client

TFTP Client

Windows Hypervisor Platform
Windows Identity Foundation 3.5
Windows PowerShell 2.0

Windows Process Activation Service
Windows Projected File System (Beta)
Windows Subsystem for Linux
Windows TIFF IFilter

Work Folders Client

6) Click Restart now.

Cancel

If you prefer using the command line method, you can also install Windows Subsystem for Linux using

PowerShell.

1) Search for PowerShell, right-click the result, and click Run as administrator.
2) Type the following command to add the required module and press Enter:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-
linux

3) Type Y to complete the installation and restart your computer.

X Administrator: Windows PowerShell
11

Microsoft-windows ystem-L1nux

After adding the Windows Subsystem for Linux module to your computer, you can install Ubuntu from
the Windows Store.

1) Search for Microsoft Store application from start menu and launch it.

2) Search for Ubuntu 16.04, published by Canonical Group Limited. (Make sure that you install
16.04 version instead of 18.04; Otherwise, when you install ROS, you will encounter “keyserver
receive failed: No dirmngr” error.

3) Click on the Install button.

Ubuntu will be downloaded and installed automatically. Progress will be reported within the Microsoft
Store application.

Once the installation completes, launch the app for the first time, Ubuntu will inform you that it’s
installing and you will need to wait for a few minutes. When complete, you will be asked for a username
and password specific to your Ubuntu installation. These doesn’t need to be the same as your Windows
10 credentials. With this step complete, you will find yourself at the Ubuntu bash command line.

Ubuntu install of ROS Kinetic

There is more than one ROS distribution you can choose. Some are older release with long term support,
making them more stable, while others are newer with shorter support times, but with options for more
recent platforms and more recent versions of ROS packages. | recommend the ROS Kinetic Kame
version, since ROS Kinetic supports Xenial (Ubuntu 16.04).

Install ROS
You can follow the official ROS installation guide for Ubuntu by the word.

1) Set up computer to accept package form ros.org.

sudo sh -c¢ 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb release -sc) main" > /etc/ap
t/sources.list.d/ros-latest.list"’

2) Set up keys

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 42
1C365BDO9FF1F717815A3895523BAEEBO1FALLlG

3) Installation
sudo apt-get update

There are many different libraries and tools in ROS. You can install them individually, but we
recommend you to install the default configurations- the full installation.

Desktop-Full Install: (Recommended) : ROS, rqt, rviz, robot-generic libraries, 2D/3D simulators, navigation
and 2D/3D perception

sudo apt-get install ros-kinetic-desktop-full

Depending on the speed of your system, this step could take a couple of hours, so you might want to go
for a walk once you kick-off the install process.

4) Initialize rosdep

sudo rosdep init

rosdep update

5) Environment setup

If you are at this step, you have an installed version of ROS on your system. If you want to source ROS
kinetic automatically for your bash session every time when a new shell is launched, you can do this with
the following command:

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

6) Get rosinstall

Now, let’s install a command tool that will help us install other packages with a single command. To
install this tool on Ubuntu, run the following command:

sudo apt-get install python-rosinstall
Or you can install this tool and other dependencies for building ROS packages, run

sudo apt-get install python-rosinstall python-rosinstall-generator python-wsto
ol build-essential

Run Simple Test
Up till now we have installed what’s needed to run the core ROS packages. To check whether you have
ROS installed correctly, you can type roscore in the shell:

‘ roscore http://PC-2:11311/ — 0 X

52-bf5d-11e d29-de

/ take awhile.
log file ¢

started roslaunch server http://PC-2:49918/
r omm version 1.12.14

auto-starting new master
process[master]: started with pid [51]
ROS_MASTER_URI=http://PC-2:11311/

setting /run_id to 2ac®fc52-bf5d-11e8-9d29-d@bf9c895a79
process[rosout-1]: started with pid [64]
started core ut]

Or if you want to check the ROS version installed, you can run the following two commands:
rosversion -d

echo $ROS_DISTRO

‘ zliu@PC-2: ~ - O X

Now let’s run popular turtle_sim to test whether ROS has been installed successfully.

To run applications with graphical output, we need to install an X server on Windows. In this aspect,
Xming did a great job. Go to SOURCEFORGE, click Xming link, then click 6.9.0.31 folder link, download
the setup.exe file and install it.

After installing Xming, we also need to configure WSL to use it. Run the following commands to modify
.bashrc:

echo ‘‘export DISPLAY=:0'' >> ~/.bashrc

source ~/.bashrc

Then launch the Xming application from the start menu, and follow instructions to configure Xming.

<X Display settings X

Select display settings
Choose how Xming displays programs.

(@) Multiple windows (O Fullscreen
() One window () One window
without titlebar

Display number ID

< Back Cancel Help

Clink finish to complete configuration.

X Finish configuration X
Configuration complete
Choose whether to save your settings to an XML file.

Click Finish to start Xming.

You may also 'Save configuration' for re-use (run automatically or alter via -load option).

Save configuration Include PUTTY Password as insecure clear text

< Back Cancel Help

After installing, configuring and running X Server, start a new bash prompt and run roscore.

roscore http://PC-2:11311/ . - -

started roslaunch server http://PC-2:58727/

sion 1.12.14

: started with pid [51]
ROS_MASTER_URI=http://PC-2:11311/

setting /run_id to aa7d467e-c@63-11e8-b663-dObf9IcB895a79
: started with pid [64]

Start a second bash prompt and run rosrun turtlesim turtle_teleop_key.

2liu@PC-2: ~ - o X

Start a third bash prompt and run rosrun turtlesim turtlesim_node.

10

® ziverc-2: ~ - O X

You can see a new window pop up with a little turtle in the middle, as shown in the following
screenshot. You can control the turtle to move around by using the arrow keys by going back to the
second prompt.

:)(TurtleSim = O X f)(TurtleSim e o X

Now, you have everything installed to play around with ROS and practice examples in this manual.

ROS Environment

During installation of ROS, environment setup files are generated for you, but can come from different
places, for example, ROS packages installed with package managers, rosbuild workspace, or a by-
product of building or installing catkin packages provide setup.*sh files. A good way to check whether
you have your environment properly setup is to ensure that environment variables, such as ROS_ROOT
or ROS_PACKAGE_PATH are set by using following command:

$ printenv | grep ROS

11

If you are not, you might need to source some setup.*sh files. If you installed ROS Kinetic from apt on
Ubuntu, you will have setup.*sh file in ‘/opt/ros/kinetic/’, and source them like this:

$ source /opt/ros/kinetic/setup.bash

You will need to run this command on every new shell you open to have access to ROS commands,
unless you add this line to your .bashrc. Run following command to open .bashrc file.

$ nano ~/.bashrc

Add this line at the end of the .bashrc file.

source /opt

ROS Workspace
The workspace is a folder where you have packages, edit the source files or compile packages. A typical
workspace is shown in the following screenshot. Each folder is a different space with different roles.

catkin_ws/
}— build

— catkin
catkin_generated
Makefile

[T

e
in
etup.zsh

T
MR

1
bi
S

w
-
(a]

CMakelists.txt -> fopt/ros/hydro/share/catkin/cmake/toplevel.cmake
ros_tutorials-hydro-devel

[T

e The Build space: in this folder, CMake and catkin keep the cache information, configuration, and
other intermediate files for packages and projects.

e The Development (devel) space: this folder is used to keep the complied programs. This is used
to test the programs without the installation step.

e The Source (src) space: this folder contains packages, projects, clone packages, and so on. One
of the most import files in this space is CMakeLists.txt, invoked by CMake when you configure
the packages in the workspace.

Let’s create a catkin workspace for L2Bot.
$ mkdir -p ~/12bot ws/src

12

$ cd ~/12bot_ws/

$ catkin make

The command is a convenient tool for working with catkin workspace. Running it the first
time, it will create a CMakelists.txt link in your ‘src’ folder. If you look into your current directory, you
should see ‘build’ and ‘devel’ folder. In Windows subsystem, the directory is
C:\Users\(username)\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu16.04onWindows_79rhk
plfndgsc\LocalState\rootfs\home\zliu\l2bot_ws. Or you can use Is command in the directory:

To finish the configuration, use the following command to reload the setup.bash file :
$ source devel/setup.bash

Now our environment is setup.

Navigate ROS Filesystem

Packages are referred to a typical structure of files and folders. Each package can contain libraries,
executables, or scripts. Code is spread across many ROS packages. To create, modify, or work with
package, ROS gives us command-line tools for assistance:

rospack is used to get information or find packages in the system.

Usage:

$ rospack find [package name]

z1liu@PC-2: $ rospack find roscpp

/opt/ros/kinetic/share/roscpp

roscd is used to change directory, similar to cd command in Linux.

Usage:
$ roscd [locationname[/subdir]]

$ roscd roscpp

$ roscd roscpp/cmake

rosls is used to list the files from a package, similar to Is command in Linux

Usage:

13

$ rosls [locationname[/subdir]]

¢ rosls turtlesim

package.xml

roscp is used to copy a file from a package to target location

Usage:
S roscp [package] [filename] [target]

Packages in a Catkin Workspace

The recommended method of working with catkin packages is using a catkin workspace. A trivial
workspace might look like this:

e workspace folder/ -- WORKSPACE

° src/ -- SOURCE SPACE

o CMakeLists.txt -- 'Toplevel' CMake file, provided by catkin
° package 1/

° CMakeLists.txt -- CMakeLists.txt file for package 1

o package.xml -- Package manifest for package 1

[]

° package n/

° CMakeLists.txt -- CMakeLists.txt file for package n

° package.xml -- Package manifest for package n

Create a Catkin Package
We can use catkin_create_pkg to create a new catkin package. Let’s change to the source space
directory of the catkin package we have created before.

$ cd ~/12bot ws/src

Now use the catkin_create_pkg to create a new package called ‘I2bot’ which depends on roscpp,
std_msgs, geometry_msgs:

$ catkin create pkg 1l2botl std msgs roscpp geometry msgs

This will create a 12bot folder which contains a package.xml and a CMakeLists.txt.

We can use rospack, roscd, and rosls commands to retrieve information about new package. For
example, use rospack to view these dependencies.

$ rospack dependsl 12botl

14

1 u@pPC-2: $ rospack sl 12botl

ometry_ms

These dependencies for a package are stored in the package.xml file:

$ roscd 12botl

S cat package.xml

<buildtool_depend>catkin</buildtool_depend>
<build_depend>geometry_msgs</build_depend>
<build_depend>roscpp</build_depend>
<build_depend>std_msgs</build_depend>
<build_export_depend>geometry_msgs</build_export_depend>
<build_export_depend>roscpp</build_export_depend>
<build_export_depend>std_msgs</build_export_depend>
<exec_depend>geometry_msgs</exec_depend>
<exec_depend>roscpp</exec_depend>
<exec_depend>std_msgs</exec_depend>

<!__ wwport tag contains othei

- <export>
<!1-- Other tools can request additional information be placed here -->
</export>
</package>

The dependencies are split into buildtool_depend, build_depend, exec_depend. So all of our specified
dependencies are available at build and run time. You can tailor the package.xml as you need.

Build an ROS Package
Now we need to build the packages in the workspace folder. When we build the package, what happens
really is that the code is compiled.

$ cd ~/12bot ws

~/12bot_ws $ catkin make
Then we need to source the generated setup file in order to add the workspace to ROS environment:

~/12bot_ws $ source devel/setup.bash

Play with ROS Nodes

Nodes are executable programs, and these executables are in the devel space.

Install I2bot Repository
Now you have known how to create a catkin package. You can also download the whole 12bot package
into the src directory by using git clone:

$ cd ~/12bot ws/src

15

~/12bot _ws/src $ git clone https://github.com/LTU-AutoEV/12bot.git
Then run catkin_make to build the package:

~/12bot _ws/src $ git clone https://github.com/LTU-AutoEV/12bot.git

~/12bot_ws $ catkin make

~/12bot_ws $ source devel/setup.bash
Then install dependencies:

~/12bot _ws $ rosdep install --from-paths src --ignore-src -r -y

Topics

ROS system consist of a number of independent nodes that comprise a graph. Nodes need to
communicate with each other and exchange information as well as data. The most common way to do
so is through topics. A topic is a name for a stream of messages with a defined type. For example, the
data from a camera might be sent over a topic called image, with a message type of Image.

Topics implement a publish/subscribe communication mechanism, the most common way to exchange
data in a distributed system. Before nodes start to transmit data over topics, they must first announce,
or advertise, both the topic name and the types of messages that are going to be sent. Then they start
send, or publish, the actual data on the topic. Nodes that want to receive message on a topic can
subscribe to that topic by making a request to roscore. After subscribing, all messages on the topic are
delivered to the node that made the request. One of the main advantages of using ROS is that all the
messy details of setting up the necessary connections when nodes advertise or subscribe to topics is

to

handled by the underlying communication mechanism so that you don't have to worry about it yourself.

We will start off by looking at how a node advertise a topic and publishes data on it.

Publishing to a Topic
The following is a minimalist ROS node that advertises the message topic and publishes hello world
message on it.

16

#include <ros/ros.h>
#include <std_msgs/String.h>

int main(int argc, char** argv)

{
// Initialize ROS

ros: :init(argc, argv, “"hello_world_pub”);

// Print messages to ROS
ROS_INFO_STREAM("hello_world_pub is running!");

// Every node must a NodeHandle
// It is the main communication point
ros: :NodeHandle nh{"~"};

16 // The publisher object
1 // Try changing the published topic to "hello_world" (no forward slash)
ros::Publisher pub = nh.advertise<std_msgs::String>("/hello_world", 10);

// How often to publish?
21 ros: :Rate loop_rate(10);

// The publish loop
while (ros::ok())
{

// Create the message object

std_msgs::String msg;

// Set the data

msg.data = "Hello world!";

// Publish the message
pub.publish(msg);

// wait for loop_rate
ros::spinOnce();

loop_rate.sleep();

return @;

}

#include <ros/ros.h>

17

#include <std_msgs/String.h>

The headers included are ros/ros.h and std_msgs/String.h. ros/ros.h includes all the files necessary to
use the node with ROS, and std_msgs/String.h denotes the type of message we are going to use.

ros::init(argc, argv, "hello_world_pub");
Initiate the node and set the name.
ROS_INFO_STREAM("hello_world_pub is running!");
Print the information to the console.

ros: :NodeHandle nh{"~"};

Set the handler of the process.

ros::Publisher pub = nh.advertise<std_msgs::String>("/hello_world", 10);

Set a publisher and tell the master the name of the topic and the type. In this case, the name is message
hello world, and the second parameter is the buffer size.

ros::Rate loop_rate(190);
Set the frequency to send the data, which in this case is 10 Hz.
while (ros::ok())
{
std_msgs::String msg;
msg.data = "Hello world!";
Create a variable for the message with the correct type to send the data, and set the message data.
pub.publish(msg);
Publish the message.
ros::spinOnce();
Here there is a subscriber, where ROS updates and reads all the topics.
loop_rate.sleep();
Sleep for the necessary time to make sure that we run the body of the while loop at 10 Hz frequency.
}

Subscribing to a Topic
The following shows a minimalist node that subscribes to the message topic and prints out the message
in the message as they arrive.

18

#include <ros/ros.h>
#include <std_msgs/String.h>

class HelloWorldSub

{
public:
HelloWorldSub();
void helloWorldCB(const std_msgs::String& msg);
private:
// Node handle and subscriber are private class member
ros::NodeHandle nh_;
ros::Subscriber sub_;
b

HelloWorldSub: :HelloWorldSub()
:nh‘_{”""}

sub_ = nh_.subscribe("/hello_world”, 10, &HelloWorldSub::helloWorldCB, this);

void HelloWorldSub::helloWorldCB(const std_msgs::String& msg)

{
ROS_INFO_STREAM(msg.data);
}
int main(int argc, char** argv)
{
// Init ros
ros::init(argc, argv, "hello_world_sub");
// All we have to do is create an instance of the object
HelloWorldSub hw{};
ros::spin();
return @;
}
class HelloWorldSub
{
public:

HelloWorldSub();

void helloWorldCB(const std_msgs::String& msg);

19

private:
ros::NodeHandle nh_;
ros::Subscriber sub_;
}
In this class, initiate the node handler and subscriber as well as the subscriber and callback functions.
HelloWorldSub: :HelloWorldSub():nh_{"~"}

{

sub_ = nh_.subscribe("/hello_world", 10, &HelloWorldSub::helloWorldCB, this);
}

In this function, a subscriber is created and starts to listen to the topic with the name hello world. The
buffer will be of 10, and the function to handle the message will be helloWorldCB.

void HelloWorldSub::helloWorldCB(const std_msgs::String& msg)

{

ROS_INFO_STREAM(msg.data);
}

This is the callback function that will be called when a new message has arrived on the hello world topic.
This is where we do something with the data; in this case, we print it in the console.

int main(int argc, char** argv)

{
ros::init(argc, argv, "hello_world_sub");
HelloWorldSub hw{};
ros::spin();

}

Finally in the main function, initiate the node and create an instance of the object for HelloWorldSub.
Once the subscription is made, we give control over to ROS by calling ros::spin(). The function will only
return when the node is ready to shut down.

Now let’s run the nodes in the terminal, and you will see the node is running.

20

jorld_pub
rld_sub (

ROS_MASTER_URI=http://localhost:11311

process[hello_world_pub-1]: started with pid [524]

[INFO] [15456]1: hello_world_pub is running!
process[hello_world_sub-2]: started with pid [525]
] Hello world!

Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!

vorld!

world!

vorld!
world!
Hello world!

Arduino Setup

L2bot is equipped with Arduino Uno, an open-source microcontroller board. The Arduino Uno is able to
read inputs - light on a sensor or a finger on a button - and turn it into an output — activating a motor or
turning on an LED. You can tell your board what to do by sending a set of instructions to the
microcontroller on the board. To do so, you can use the Arduino Software (IDE). The Arduino IDE allows
you to write programs and upload them to your board.

Download and Install Arduino IDE

You can choose between Windows Installer (.exe) and ZIP packages. It’s advised to use the first one that
installs directly everything needed to use the Arduino Software (IDE), including drivers, while you need
to install drivers manually with the ZIP package.

21

Windows Installer, for Windows XP and up
Windows ZIP file for non admin install

Windows app Requires Win 810r 10
Get u

Mac OS X 10.8 Mountain Lion or newer

Linux 32 bits
Linux 64 bits
Linux ARM

Release Notes
Source Code
Checksums (sha512)

When the download finishes, proceed with the installation, follow the instructions and also allow the
driver installation process when getting a warning from the Windows. When installation finishes, run the
Arduino IDE the first time and then close it once it has finished launching. This will automatically create a
directory for all your sketchbooks.

Add serial write permissions
Open Ubuntu terminal, run the following command:

S sudo usermod -a -G dialout <UNAME>

<UNAME> is your username.

-G dialout zliu

Restart your computer.

Arduino IDE Setup

ROS bindings are implemented as an Arduino library. Using the rosserial_arduino package, you can use
ROS directly with the Arduino IDE.

Install Related Libraries
Install rosserial for Arduino by running the following command:

sudo apt-get install ros-kinetic-rosserial-arduino

sudo apt-get install ros-kinetic-rosserial

22

The preceding installation creates ros_lib. ros_lib works by putting its library implementation into the
libraries folder of your sketchbook, so it has to be copied into the Arduino build environment to enable
Arduino program to interact with ROS.

Go to the Arduino sketchbook/libraries directory, and run the following command:

cd <sketchbooks/libraries

rosrun rosserial arduino make libraries.py

Or you can install the libraries directly in the Arduino IDE. Open the Library Manager from the IDE menu
in Sketch -> Include Library -> Manage Library, search for “rosserial”, and then clink the Install button on
the right side.

& Library Manager

Type All || Topic All ~ | rosserial

Rosserial Arduino Library by Michael Ferguson Version 0.7.9 INSTALLED
Use an Arduino as a ROS publisher/subscriber Works with http://wiki.ros.org/rosserial, requires a rosserial node to connect
i

After reopening the IDE, you can see ros_lib listed under examples:

Db Semon
Som o5 07 Duplay
Sethi. Culnmes | DSSwig

09U58
Fage Sewp CirlShifieP 1eStaserkin Banicin
Frind b M Arisnalss

Adcutrut Cresit Mayground 1 s

RETIED

EEPROM
Seftmaresena
m

wire

Romserial Aruing Libraey

Load Interface into Arduino IDE

Open Arduino IDE, go to File -> Open -> Open file L2Bot_MC.ino, which is located at
C:\Users\(username)\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu16.04onWindows_79rhk
plfndgsc\LocalState\rootfs\home\zliu\l2bot_ws\src\I2bot\arduino\L2Bot_MC

Plug in the Arduino and turn on the L2Bot.

Go to Tools -> Port -> select your Arduino device (to view your Arduino device, you can search for Device
Manager -> Port

Upload to Arduino

23

Identify Your Arduino Board
Plug in your Arduino and turn on L2Bot, and execute the detect_arduino.py script.

Gazebo Simulation

Although Windows Subsystem provides a convenient way for us to use bash, it has its limitations. It
doesn’t support camera at the moment. So instead of running code on L2bot, | will run ROS node in
simulation.

Installation of Gazebo
Type the following commands in the terminal:

1. Set up computer to accept packages from osrfoundation.org

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable "1sb_rel
ease -cs’ main" > /etc/apt/sources.list.d/gazebo-stable.list’

2. Update debian database
sudo apt-get update

3. Install gazebo7
Gazebo is an independent project. Usually the latest version of gazebo available at the beginning of
every ROS release cycle is selected as the official version to be integrated and will be kept for the whole
life of the ROS distribution. So be sure to select the correct gazebo version based on your ROS. Our ROS
kinetic goes with Gazebo7. so download gazebo7.
sudo apt-get install gazebo9

4. Launch gazebo

gazebo

After Gazebo is launched, you can see the GUI with an empty world.

24

- . .
| Gazebo - o x

You can download models from http://models.gazebosim.org/ and drag them into the world. Let’s drag
a TurtleBot in the world.

25

Now let’s connect Gazebo to ROS.

The ROS packages to interface with Gazebo is contained in gazebo_ros_pkgs. Let’s install
gazebo_ros_pkgs.

Before installing the package, make sure the stand-alone Gazebo works and test whether you have the
right version of Gazebo installed.

which gzserver

which gzclient

‘| @ ziverc-2: ~ -] X

Now run the following command to install the package.

sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-ros-control

26

Now test Gazebo with ROS integration. Be sure to source ROS setup file first:
source /opt/ros/kinetic/setup.bash

Or

source ~/catkin_ws/devel/setup.bash

Now let’s run Gazebo.

roscore &

rosrun gazebo_ros gazebo

Gazebo GUI will appear with an empty world.

B Gazero = o x |
|

27

We can also verify Gazebo service exist.

y_joint_effort
-lear_body_wrenches
-lear_joint_forces
elete_light

int_properties
o/get_light_properties
et_link_properties
t_link_state
et_loggers
et_model_properties

et_light_properties
et_link_properties
t_link_state
set_logger_level
t_model_configuration
t_model_state
t_parameters
et_physics_properties
pawn_sdf_model
awn_urdf_model

t_logger_level
$

Nodes Example

Forward:
This example sends commands to L2bot and make L2bot drive forward for 8 seconds.

28

// ROS and messages
#include <ros/ros.h>
#include <geometry_msgs/Twist.h>

// L2Bot Controller Topic

#define TWIST_PUB "/rb_drive/rb_drive/twist_cmd"
// Time to drive forward (in seconds)

#define FWD_TIME 8.0

int main(int argc, char** argv)

{

// Initialize ROS
ros::init(argc, argv, "go_fwd");
ros::NodeHandle nh;

// Publish
ros::Publisher pub = nh.advertise<geometry_msgs::Twist>(TWIST_PUB, 18);

// Publish rate
ros::Rate loop_rate(10);

// The twist message to publish
geometry_msgs::Twist msg;
msg.linear.x = 2.0f;
msg.angular.z = 9.8f;

ros::Time begin = ros::Time::now();

ROS_INFO_STREAM("12bot_example 'forward®' publishing for " << FWD_TIME << " seconds!");

29

H
loop_rate.sleep();

msg.linear.x = @.8f;

pub.publish(msg);

ROS_INFO_STREAM("12bot: forward complete!®);

ros::spin();

return 9;

Here is a further explanation of the preceding code:
include <ros/ros.h>

include <geometry msgs/Twist.h>

These lines includes the headers we are going to need. Here ros/ros.h includes all the files necessary
to use the node with ROS, like creating a node and creating a publisher, and geometry_msgs/Twist.h
includes the header that denotes the type of the message we are going to use, in this case, the Twist
message. The Twist message is composed of 3 linear components and 3 angular components.

define TWIST_PUB "/rb_drive/rb_drive/twist_cmd"
Define the topic the node is publishing to.

define FWD_TIME 8.0

Define the moving forward time.

ros::init(argc, argv, "go_fwd");

ros: :NodeHandle nh;

30

ros::init is used to initialize the ROS rode, and name it “go_fwd”, while ros: :NodeHandle starts the
node.

ros::Publisher pub = nh.advertise<geometry msgs::Twist>(TWIST_PUB, 10);

Publishing a message is done through ros: :Publisher pub = nh.advertise, followed by the message
type that we are going to send. In this case it is a geometry _msgs::Twist, and the topic that we are
going to be sending too, which in this case is TWIST_PUB. The second parameter is the buffer size or
message queue size. In this example, the buffer size is 10. If you are publishing message faster than what
roscpp can send, a large buffer size will be used. the larger the buffer, the more delay in robot
movement in case of buffering. Therefore, in real life example, you will want to have a smaller buffer in
case of robot movement, where delay in movement commands are undesirable and even dangerous,
but dropped message is acceptable.

ros::Rate loop_rate(19);

ROS is able to control the loop frequency to send the data using ros: :Rate to indicate how rapidly the
loop will run in Hz. All Clearpath robots require a minimum loop rate of 10Hz.

geometry _msgs::Twist msg;

This line creates the message we are going to send, msg of the type geometry_msgs::Twist.
msg.linear.x = 2.0f;

msg.angular.z = 0.0f;

These two lines calculate the linear x and angular z values that will be sent to TWIST_PUB. Our [2bot
robots come with very simple commands, for example, only rotate in its axis and move in one direction.
The amount of rotational (angular) motion can be specified using the angular parameter and the
amount of linear motion can be specified using the linear parameter. In our example, since the robot
moves forward in a straight line, we just need linear x velocity as our moving straight forward speed,
and angular velocity z is set to 0, so our robot will not turn (counter clock-wise). Once you set these
parameter values into the variables in geometry msgs::Twist and publish it, the robot will move
accordingly.

ros::Time begin = ros::Time::now();

This line of code is to get the current time as a ros: : Time instance.
ROS_INFO_STREAM("12bot_example 'forward' publishing for " << FWD_TIME << " seconds!");
Output the logging message by using c++ STL streams function.

while(ros::ok())

ros: :ok()function will return true if it receives a command to shut down, either by using the rosnode
kill command, or by the user pressing Ctr1+C in the terminal.

pub.publish(msg);

Now we are finally ready to publish the message. The pub.publish adds msg to the publisher queue to
be sent.

31

ros::spinOnce();

Usually ros: :spinOnce() will call the callbacks waiting to be called at that point in time. In this case, we
have a subscriber in this part, where ROS updates and reads all topics.

loop_rate.sleep();

the loop_rate instance will attempt to keep the loop at 10 Hz frequency by sleeping for the necessary
time.

ros::Time end = ros::Time::now();
ros::Duration dur = end - begin;

Get the current time as a ros: : Time instance, and perform arithmetic operations on Duration instance
to get runtime duration.

if (dur.toSec() > FWD_TIME)

{

msg.linear.x = 0.0f;
pub.publish(msg);
}

If the duration time is larger than the five seconds, publish the stop message by using msg.linear.x =
0.0f.

ros::spin();

The ros::spin() line is a loop where the node starts to read the topic, and will not return until the node
exits the loop and ends, either through users presses Ctrl + c or a call to ros: : shutdown().

First run the code on our I12bot.

~/12bot_ws$ source devel/setup.sh
~/12bot_ws$ roslaunch 12bot_examples forward.launch

32

L2bot_Forward8s Video link

https://youtu.be/OYMLEpvoWcl

Then run in the Gazebo simulator:

Gazebo_Forward8s video link:

33

https://youtu.be/YcYFsVhMTN4

Using a Joystick
A joystick is nothing more than a series of buttons and potentiometers. With this device, you can

perform or control a wide range of actions. In ROS, a joystick is used to telecontrol a robot to change its

velocity or direction.
Joy_Nav:

This example shows how to convert hardware input messages into L2bot controls, and allows users to
drive the L2bot with a joystick.

#include <ros/ros.h>»

#include <sensor_msgs/Joy.h>
#include <geometry_msgs/Twist.h>
#include <std_msgs/UInt32.h>
#include <string>

#include <math.h>

#define JOY_SUB "/joy"
#define TWIST_PUB "/rb_drive/rb_drive/twist_cmd"

#define MULTIPLIER 3

34

/* Class JoyNav
* Convert gamepad input to a geometry_msgs
* Publish: Twist on TWIST_PUB
* Subscribe: Joy on "/joy"
e
class JoyNav
{
public:
JoyNav();

private:

// Callback function
void joyCallback(const sensor_msgs::Joy

// ROS node handle
ros: :NodeHandle nh_;

// Publisher and subscriber
ros::Publisher twist_pub_;
ros::Publisher state_pub_;

ros::Subscriber joy_sub_;

int axes_linear_;
int axes_angular_;

¥

::Twist

::ConstPtr& joy);

35

// Constructor

// Set up publisher and subscriber
JoyNav::JoyNav() : nh_{"~"}

{

// Subscribe to the controller

joy_sub_ = nh_.subscribe<sensor_msgs::Joy>(JOY_SUB, 1@, &JoyNav::joyCallback, this);

// Publish control vectors

twist_pub_ = nh_.advertise<geometry_msgs::Twist>(TWIST_PUB, 1@9);

// Load 1S Mappings

if (!nh_.getParam("/joy_mappings/axes_linear", axes_linear_))

{
ROS_ERROR_STREAM("joy_nav: Could not load joystick configuration.");
ROS_ERROR_STREAM("joy_nav: Please run “roslaunch 12bot_examples joy_setup.launch™");
axes_linear_ = -1;
axes_angular_ = -1;

}

nh_.getParam("/joy_mappings/axes_angular”, axes_angular_);

// Callback function
// Take input from contoller and create a vector from the input

void JoyNav::joyCallback(const sensor_msgs::Joy::ConstPtr& joy)

{

int

// Get right-left and fwd-bkwd values
// Values range from -1 to 1
float rl = joy->axes[axes_angular_];

float fb = joy->axes[axes_linear_]; //(1 - (joy-»axes[axes_linear_]))/2.0f;
// Create a vector

geometry_msgs::Twist vec;

vec.linear.x = MULTIPLIER * fb * -1;

vec.angular.z = atan(rl);

// Publish the vector
twist_pub_.publish(vec);

main(int argc, char** argv)

ros::init(argc, argv, “joy_nav");

JoyNav joy_nav;

ros::spin();

36

We're going to break the code to explain how it works.
#include <ros/ros.h>

#include <sensor_msgs/Joy.h>

#include <geometry_msgs/Twist.h>

#include <std_msgs/UInt32.h>

#include <string>

#include <math.h>

These lines includes the headers and type of messages we are going to need for the joystick topic. We've

maintained ros/ros.h, which includes all the files necessary to use the node with ROS, and
geometry_msgs/Twist.h, whichincludes the header that denotes the type of the message we are
going to create. sensor_msgs/Joy.h includes the joystick message so that we can listen to the joy

topic. It includes fields such as std_msgs/header, axes, and buttons you can use if you use a joystick.

define JOY_SUB "/joy
define TWIST_PUB "/rb_drive/rb_drive/twist_cmd"

define MULTIPLIER 3

int main(int argc, char** argv)

In the main function, we create an instance of the JoyNav class. In the JoyNav class, we define the
jobCallback function that will take a joy message, and we also create a node handler, publisher, and
subscriber for use.

JoyNav::JoyNav() : nh_{"~"}

{
joy_sub_ = nh_.subscribe<sensor_msgs::Joy>(JOY_SUB, 10, &JoyNav::joyCallback, this);
twist_pub_ = nh_.advertise<geometry _msgs::Twist>(TWIST_PUB, 100);

if (!nh_.getParam("/joy_mappings/axes_linear", axes_linear_))

axes_linear_ = -1;

axes_angular_ = -1;

37

nh_.getParam("/joy_mappings/axes_angular", axes_angular_);

}

In the JoyNav constructor, four variables are initialized. The first two variables are the advertiser and
subscriber. The advertiser will publish a topic with the geometry msgs::Twist message type with the
buffer size of 100.The subscriber will get data from the topic with the name Joy. The node that is
handling the joystick sends this topic. The buffer will be of 1, meaning that if our node is slow in
processing incoming messages on the joystick topic, 1 message will be buffered, and the function to
handle the message will be joyCallback. The next two variables are filled using data from parameter
server. These variables are joystick axes.

void JoyNav::joyCallback(const sensor_msgs::Joy::ConstPtr& joy)

{
float rl

joy->axes[axes_angular_];
float fb = joy->axes[axes_linear_];
geometry_msgs::Twist vec;
vec.linear.x = MULTIPLIER * fb * -1;
vec.angular.z = atan(rl);
twist_pub_.publish(vec);

}

Callback function is called every time that the node receives a message. This is where we do something
with the data; in this case, we create a new variable with the name vec, which will be used to publish
data. The values of the axes of the joystick are assigned to vec variable, and used to control the linear
and angular velocities of the robot. Finally, we publish the prepared message using pub.publish(vec).

int main(int argc, char** argv)

{
ros::init(argc, argv, "joy_nav");
ros::spin();

}

Finally, in the main function, we initialize ROS node, create an instance of the JoyNav class, and use
ros::spin() line. The ros: :spin() line is a loop where the node starts to read the topic and when a
message arrives, joyCallback is called. When users presses Ctrl + ¢, the node exits the loop and ends.

We will use tele control to move robot in Gazebo simulation to avoid those obstacles.

38

Video link:

https://youtu.be/3sy5SWML1J3Q

Computer Vision

ROS provides basic support for Computer Vision. Drivers are available for different cameras and
protocols, and an image pipeline helps with the camera calibration process, distortion ratification, color
decoding, etc. For more complex tasks, you can use OpenCV, and the cv_bridge and image_transport
libraries to interface with it and subscribe and publish images on topics. The following example
demonstrates how to publish and subscribe to images in ROS, and also how to use OpenCV in nodes.

Cam_Pub
First, we will create an image publish node which will continually publish an image.

#include <ros/ros.h>
#include <image_transport/image_transport.h>
e <opencv2/highgui/highgui.hpp>

= <cv_bridge/cv_bridge.h>

e <Ctime>

de <cstdlib>
#include <string>
#include <vector>

#define CVWIN_OUT “cam_pub output”

39

Jxr
* Image publisher for cv images
* Publishes images at ~3@fps
*/

int main(int argc, char** argv)

{

//Initialize and set up ROS

ros::init(argc, argv, "cam_pub™);

ros: :NodeHandle nh("~");
image_transport::ImageTransport it(nh);

image_transport::Publisher pub = it.advertise("image_raw", 1);

std::string source;

cv::VideoCapture cap;

ros::Rate loop_rate(30);

int empty_frame_count = 0@;
cv::Mat frame;

sensor_msgs: : ImagePtr msg;

// Open the video source

if (nh.getParam(“source”, source))

{
cap.open(source);
ROS_INFO_STREAM("cam_pub: publishing using video source " << source << "...");
}
else
{
cap.open(@);
ROS_ERROR_STREAM(“param ‘~source' not defined, using default camera 9");
}

// Check if video device can be opened with the given index
if(!cap.isOpened())
{

ROS_ERROR_STREAM("video device cannot be opened”);

return 1;

LI
// Parameters //
sl

// Flip along horizontal axis?

bool hflip = false;

nh.getParam("hflip”, hflip);

if (hflip) ROS_INFO_STREAM(source << ": hflip active!");

// Show output

bool show_output = false;

nh.getParam("“show_output”, show_output);

if (show_output) ROS_INFO_STREAM(source << ": show_output

active!");

41

while (nh.ok())
{
cap >> frame;
// Check if grabbed frame is actually full with some content
if(!frame.empty())
{
empty_frame_count = 0;
// Flip the image upside down
if (hflip) cv::flip(frame, frame, -1);
if(show_output)
{
cv::imshow(CVWIN_OUT, frame);
¥
msg = cv_bridge::CvImage(std_msgs::Header(), “"bgr8", frame).toImageMsg();
pub.publish(msg);
cv::waitKey(1);
;
else
{
empty_frame_count++;
if (empty_frame_count > 20)
{
ROS_ERROR_STREAM("Could not read input, closing cam pub”);
return 1;
¥
}
ros::spinOnce();
loop_rate.sleep();
}
1
include <ros/ros.h>
include <image_transport/image_transport.h>
include <opencv2/highgui/highgui.hpp>
include <cv_bridge/cv_bridge.h>
include <ctime>
include <cstdlib>
include <string>

42

include <vector>

The image_transport APl allows the publishing of images using several transport formats seamlessly,
which can be compressed images, with different codecs, based on the plugins installed in the ROS
system. The cv_bridge is used to load an image using OpenCV and convert it to ROS Image message
format, for which we may need the image encoding of sensor_msgs, in the case of grayscale/color
conversion. Finally, we need the highgui APl of OpenCV 2 in order to use cv: :VideoCapture.

int main(int argc, char** argv)
{
ros::init(argc, argv, "cam_pub");
ros: :NodeHandle nh("~");
image_transport::ImageTransport it(nh);
image_transport::Publisher pub = it.advertise("image_raw", 1);

In main function, we first create a node handle and an ImageTransport instance used to send images
in all available formats, initializing it with NodeHandle. We use methods of ImageTransport to create
image publishers, advertising that we are going to be publishing images on the basic topic “image_raw”.
Additional topics may also be advertised depending on whether there are more plugins built. The
second argument is the size of the publishing queue. advertise() returns an

image transport::Publisher Object, which serves as two purposes: first, the publish() method
contained lets you to publish images onto the basic topic it’s created with; second, when out of scope, it
will automatically un-advertise.

std::string source;
cv::VideoCapture cap;
ros::Rate loop_rate(390);
int empty_frame_count = 0;
cv::Mat frame;
sensor_msgs: :ImagePtr msg;
These are OpenCV stuff to capture images/frames, and image pointer of OpenCV images.

if (nh.getParam("source", source))

{
cap.open(source);

This block of code is used to open the video source.

if(!cap.isOpened())

43

}

This is to check whether video device can be opened with the given index.
bool hflip = false;

nh.getParam("hflip", hflip);

if (hflip) ROS_INFO_STREAM(source << ": hflip active!");

bool show output = false;

nh.getParam("show_output", show_output);

if (show_output) ROS_INFO_STREAM(source << ": show_output active!");

These lines use getParam() to flip an image and show the output. Note that getParam() returns a bool,
which provides the ability to check whether retrieving the parameter succeeded or not.

while (nh.ok())

{
cap >> frame;
if(!frame.empty())
{
empty_frame_count = 0;
if (hflip) cv::flip(frame, frame, -1);
cv::imshow(CVWIN_OUT, frame);
msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", frame).toImageMsg();
pub.publish(msg);
cv::waitKey(1);
}
}
Else
{
if (empty_frame_count > 20)
{
return 1
}
}

In the publish loop, first retrieve frame from the video device. If the retrieved frame from the video
device is not empty it will be flipped, showed on GUI window, and then converted to a ROS message,
which will be published by the publisher. If the retrieved frame is empty, camera publish node will be
closed.

44

Cam_Edge_Detect

#include <ros/ros.h>

#include <image_transport/image_transport.h>
4 #include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>

#include <opencv2/highgui/highgui.hpp>

// Change this value if you are subscribing to a different camera

#define CAM_TOPIC “/camera_1/cam_pub/image_raw"

// The name of the preview window
12 #define CVWIN_PREVIEW “"cam_edge_detect preview”

/'l'!
16 * Simple Camera Subscriber

¥ s sEEEssEEsSsSEESE

*

* In this example we use a class to modularize the functionality
* of this node. We can include several member functions and
21 * variables which hide the functionality from main().
*
class SimpleCamSub
{
public:
SimpleCamSub();
~SimpleCamSub();

void imageCb(const sensor_msgs::ImageConstPtr& msg);

private:

void getEdges(cv::Mat& src, cv::Mat& dst);

ros::NodeHandle nh_;
34 image_transport::ImageTransport it_;
image_transport::Subscriber image_sub_;

};

45

/t*
* Constructor
¥ zzzszszss=s

£

* Do all initilization code here. This way, our main() function only
* needs to instantiate the SimpleCamSub object once and do nothing
* else (see main() below).
x
* In this case, we only need to set up the image subscriber
L §
SimpleCamSub: :SimpleCamSub()
:nh_{"~"}, it_{nh_}

image_sub_ = it_.subscribe(CAM_TOPIC, 1, &SimpleCamSub::imageCb, this);
}
/t*
* Destructor
¥ mozmooo=ooms

£l

* Destroy CV windows
*f
SimpleCamSub: :~SimpleCamSub()

{
cv::destroyWindow(CVWIN_PREVIEW);

46

/*¥
* Callback function

¥ susssssssssssssa

-

* Called once every time a image is published on the topic this

- node is subscribed to. The image is passed to the function as

* a ImageConstPtr. A few lines of code validate the image and

* convert it into a cv::Mat

L |
void SimpleCamSub::imageCb(const sensor_msgs::ImageConstPtr& msg)
{

//Convert to cv image

cv_bridge: :CvIimagePtr cv_ptr;

try
{
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
¥
catch (cv_bridge::Exception& e)
{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
¥

// Run edge detection function
cv::Mat edges;
edges.create(cv_ptr->image.size(), cv_ptr->image.type());

getEdges(cv_ptr->image, edges);

// Show preview window
cv::imshow(CVWIN_PREVIEW, edges);

// Update GUI Window
cv::waitKey(3);

47

»

*

7§

Edge Detection Example

I EEEEEEEEEEEESE SRR

An example function which detects the edges of the input image.
The image is first converted to grayscale. Then, amedian blur
is applied to increase performance of the Canny edge detect

function. Finally, the edged are dialated using MORPH_RECT.

void SimpleCamSub::getEdges(cv::Mat& src, cv::Mat& dst)

// Convert the source to grayscale
cv::Mat src_gray;

cv::cvtColor(src, src_gray, CV_BGR2GRAY);

// Edge detection parameters

int lowThreshold = 65;

int rat = 3;

int kernel = 1;

int blur = 1;

int dilation_type = cv::MORPH_RECT;
int dilation_size = 5;

// These variables must be odd
int kernel_size = kernel*2+1;
int blur_size = blur*2+1;

// Apply median blur and edge detect
cv::medianBlur(src_gray, dst, blur_size);

cv::Canny(dst, dst, lowThreshold, lowThreshold*rat, kernel_size);

// DIlaliate edges

cv::Mat dilate_element = cv::getStructuringElement(dilation_type,
cv::Size(2*dilation_size + 1, 2*dilation_size+l),
cv::Point(dilation_size, dilation_size));

cv::dilate(dst, dst, dilate_element);

48

int main(int argc, char** argv)

{
150 ros::init(argc, argv, "cam_edge_detect");
/ Create a SimpleCamSub object.
/ Since initilization code is in the constructor, we do
// not need to do anythong else with this object
SimpleCamSub sd{};
ROS_INFO_STREAM("cam_edge_detect running!");
ros::spin();
return @;

include <ros/ros.h>

include <image_transport/image_transport.h>
include <cv_bridge/cv_bridge.h>

include <sensor_msgs/image_encodings.h>
include <opencv2/highgui/highgui.hpp>

We've talked about image transport, cv_bridge, highgui in the last example: image_transport
headers have functions to publish and subscribe to image messages; cv_bridge header has functions to
convert between OpenCV ROS data types; highgui has GUI-related functions. image_encodings header
has the image-encoding format used during ROS-OpenCV conversions.

define CAM_TOPIC "/camera_1/cam_pub/image_raw"
This line of code defines the camera you are subscribing to.

define CVWIN_PREVIEW "cam_edge_detect preview"
This line of code gives a name to the camera edge detect window.
int main(int argc, char** argv)
{
ros::init(argc, argv, "cam_edge_detect");

SimpleCamSub sd{};

In the main function, an instance of SimpleCamSub object is created. Inthe following SimpleCamSub
class, we define the imagecCb callback function that will take an image as a ImageConstPtr, and we also
create a node handler, image_transport to help send ROS Image messages across the ROS computing
graph, and subscriber for later use.

class SimpleCamSub {

public:

49

SimpleCamSub();
~SimpleCamSub();
void imageCb(const sensor_msgs::ImageConstPtr& msg);
private:
void getEdges(cv::Mat& src, cv::Mat& dst);
ros: :NodeHandle nh_;
image_transport::ImageTransport it_;

image_transport::Subscriber image_sub_;

}
SimpleCamSub: :SimpleCamSub():nh_{"~"}, it_{nh_}
{
image_sub_ = it_.subscribe(CAM_TOPIC, 1, &SimpleCamSub::imageCb, this);
}

In the SimpleCamSub constructor, a subscriber variable is initialized for the input image topic.
Whenever an image arrives on the input image topic, it will call a function named imageCb. The names
of the topics are retrieved from ROS parameters.

SimpleCamSub: :~SimpleCamSub()
{

cv::destroyWindow(CVWIN_PREVIEW);
}
In the destructor, OpenCV highgui calls to destroy a display window on shutdown.

void SimpleCamSub::imageCb(const sensor_msgs::ImageConstPtr& msg)

{
cv_bridge::CvImagePtr cv_ptr;
try
{
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings: :BGR8);
}

The above code is the definition of imageCb, which is a callback for image_raw. What it basically does is
that it converts the sensor_msgs/Image data into the cv::Mat OpenCV data type. The
cv_bridge::CvImagePtr cv_ptr buffer is allocated for storing the OpenCV image after performing the
ROS-OpenCV conversion using the cv_bridge: :toCvCopy function.

cv::Mat edges;
edges.create(cv_ptr->image.size(), cv_ptr->image.type());
getEdges(cv_ptr->image, edges);

cv::imshow(CVWIN_PREVIEW, edges);

50

cv::waitKey(3);
}

A cv::Mat data type is created for edges, and get the size and type of this OpenCV image data type. And
then a functional call of getEdges(), which is performing image edges detection on the converted
OpenCV image data type from the ROS image message. Using cv_ptr->image, we can retrieve the

cv: :Mat data type, and pass edges variables as second argument. In the last two lines, we update GUI
window to show preview image.

void SimpleCamSub::getEdges(cv::Mat& src, cv::Mat& dst)
{
cv::Mat src_gray;
cv::cvtColor(src, src_gray, CV_BGR2GRAY);
cv::medianBlur(src_gray, dst, blur_size);
cv::Canny(dst, dst, lowThreshold, lowThreshold*rat, kernel_size);

cv::Mat dilate_element = cv::getStructuringElement(dilation_type, cv::Size(
2*dilation _size + 1, 2*dilation size+1), cv::Point(dilation_size, dilation_size));

cv::dilate(dst, dst, dilate element);

}

The above is the core port of the program, which is the detection of edges of the input image. The image
is first converted to grayscale. Then, median blur is applied to increase performance of the Canny edge
detection function. Finally, the edges are dilated using MORPH_RECT.

In the Gazebo simulation, on the upper corner of the image view, you can see what can be seen from
the robot’s camera.

51

x*m'rwﬂfmmﬂm
P TI@PLPHT

(oadtn, yo 100 ~ 5130 0377 158

X fmybot/cameral/mmagera. — o 4
st SEDLLHS

Gazebo_CamView video files link

https://youtu.be/i[nGNG8uNntA

https://youtu.be/IFLmwaSlyUg

52

stop_on_white
\

#include <ros/ros.h>
#include <geometry_msgs/Twist.h>

// Includes for dynamic reconfigure
#include <dynamic_reconfigure/server.h>
#include <12bot_examples/StopOnWhiteConfig.h>

// Includes for working with images
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>

12 #include <opencv2/highgui/highgui.hpp>

// Change this value if you are subscribing to a different camera
15 #define CAM_TOPIC "/camera_1/cam_pub/image_raw"

#define TWIST_PUB "/rb_drive/rb_drive/twist_cmd”

#define CVWIN_PREVIEW "threshold preview"

53

,‘8
* Stop on White

* In this example we use a class to modularize the functionality
* of this node. We can include several member functions and
* variables which hide the functionality from main().
*
class StopOnkhite
{
public:
StopOnkhite();
~StopOnkihite();
void imageCb(const sensor_msgs::ImageConstPtr& msg);
void configCallback(12bot_examples::StopOnlWhiteConfig &config, uint32_t level);

private:
float countWhite(const cv::Mat& src, cv::Mat& dst);

ros: :NodeHandle nh_;
image_transport::ImageTransport it_;
image_transport::Subscriber image_sub_;
ros: :Publisher pub_;

dynamic_reconfigure::Server<l2bot_examples: :StopOnlthiteConfig> server_;

float white_all_ratio_;
int thresh_value_;

int max_BINARY_value_;
int thresh_type_;

bool use_median_blur_;
int blur_amount_;

j“

* Constructor
* sossszsssss

.
* Do all initilization code here. This way, our main() function only
* needs to instantiate the StopOnWhite object once and do nothing
* else (see main() below).

=

* In this case, we only need to set up the image subscriber

o |

StopOnkihite: :StopOnlhite()

/

:nh_{"~"}, it_{nh_}

// Subscribe to the camera publisher node
image_sub_ = it_.subscribe(CAM_TOPIC, 1, &StopOnWhite::imageCb, this);

// Publish on the 12bot twist command topic
pub_ = nh_.advertise<geometry_msgs::Twist>(TWIST_PUB, 1@);

// Dynamic Reconfigure
server_.setCallback(boost::bind(&StopOnkhite::configCallback, this, _1, _2));

// Default values

thresh_value_ = 18@;
white_all_ratio_ = 0.5;
thresh_type_ = cv::THRESH_BINARY;
max_BINARY_value_ = 255;
use_median_blur_ = true;
blur_amount_ = 3;

L2 3

* Destructor

% szsszssz=s=

=

* Destroy CV windows
L 4

StopOniihite: :~StopOnkihite()

{

cv::destroyWindow(CVWIN_PREVIEW);

55

/

* Dynamic Reconfigure Callback

* m=m

* This function is called every time the Dynamic Reconfigure UI
* is updated by the user.

a4

void StopOnkhite::configCallback(1l2bot_examples::StopOnkhiteConfig &config,

{

white_all_ratio_ = config.white_all_ratio;
thresh_value_ = config.thresh_value;

max_BINARY_value_ = config.max_value;

use_median_blur_ = config.use_median_blur;

blur_amount_ = config.blur_amount;

switch (config.thresh_type) {

case

case

case

case

case
case

a:
1:
23
3:
4:
S:

thresh_type_ = cv::THRESH_BINARY; break;
thresh_type_ = cv::THRESH_BINARY_INV; break;
thresh_type_ = cv::THRESH_TRUNC; break;
thresh_type_ = cv::THRESH_TOZERO; break;
thresh_type_ = cv::THRESH_TOZERO_INV; break;
thresh_type_ = cv::THRESH_OTSU; break;

uint32_t level)

56

133 * Called once every time a image is published on the topic this

134 * node is subscribed to. The image is passed to the function as
135 * a ImageConstPtr
136 ./
13 void StopOnkWhite::imageCb(const sensor_msgs::ImageConstPtr& msg)
{

139 //Convert to cv image
140 cv_bridge: :CvImagePtr cv_ptr;

141 try
142 {

143 cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
144 ¥

145 catch (cv_bridge::Exception& e)

146 {

147 ROS_ERROR("cv_bridge exception: %s", e.what());

148 return;

14 }

151 // Apply a threshold and count the number of white pixels
152 cv::Mat preview;
153 float white_visible = countWhite(cv_ptr->image, preview);

155 // Uncomment to print pixel ratio to terminal
156 //ROS_INFO_STREAM("white/all pixel ratio: " << white_visible);

158 // If the number of white pixels is above a certain percent, stop
15¢ geometry_msgs::Twist twist;

160 if (white_visible > white_all_ratio_)

161 {

162 twist.linear.x = 0.0;

163 ROS_INFO_STREAM("Stopping!!");

164 }
165 else

166 {

167 twist.linear.x = 2.0;
168 }

169 pub_.publish(twist);

171 // Show preview window

172 cv::imshow(CVWIN_PREVIEW, preview);

174 // Update GUI Window
175 cv::iwaitKey(3);

include
include
include
include
include
include

include

’J'Il
* Count White Pixels Example
% pessssrsssEEsEEEEEEEEEEEEE
* This function uses dynamic thresholding to binarize the imput image.
*= It then counts the number of white pixels and returns (#white)/(#total)

* https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold

!
float StopOnWhite::countWhite(const cv::Mat& src, cv::Mat& preview)

{
// Convert the source to grayscale
cv::Mat src_gray;
cv::cvtColor(src, src_gray, CV_BGR2GRAY);

// Blur the image to reduce noise (kernel must be odd)
if (use_median_blur_) cv::medianBlur(src_gray, src_gray, 2*blur_amount_ + 1);

// Threshold parameters
cv::threshold(src_gray, preview, thresh_value_, max_BINARY_value_, thresh_type_);

// The number of white pixels

int white_count = cv::countNonZero(preview);

// Function return ratio #white / #total

return (float)white_count / (float)(src.rows * src.cols);

int main(int argc, char** argv)
{
ros::init(arge, argv, "stop_on_white");

// Create a StopOnWhite object.

// Since initilization code is in the constructor, we do
/f not need to do anythong else with this object
StopOnkihite sd{};

ROS_INFO_STREAM("stop_on_white running!");
ros::spin();
return @;

¥

<ros/ros.h>

<geometry_msgs/Twist.h>
<dynamic_reconfigure/server.h>
<12bot_examples/StopOnWhiteConfig.h>
<image_transport/image_transport.h>
<cv_bridge/cv_bridge.h>

<sensor_msgs/image_encodings.h>

58

include <opencv2/highgui/highgui.hpp>

These lines include the header for ROS, a dynamic reconfigure parameter server, config file created
earlier, and headers for working with images.

int main(int argc, char** argv)
{
ros::init(argc, argv, "stop_on_white");

StopOnWhite sd{};

In the main function, after initializing the ROS rode named “stop_on_white”, an instance of
SimpleCamSub object is created. In the following StopOnWhite class, we define the imageCb callback
function that will take an image as a ImageConstPtr, and configCallback callback function. we also
create a node handler, image_transport to help send ROS Image messages across the ROS computing
graph, and a publisher for L2bot twist message. Then a server is initialized through
dynamic_reconfigure: :Server where we pass the StopOnWhiteConfig configuration file. The
remaining definitions are for handling parameter values.

class StopOnWhite

{
public:

StopOnWhite();

~StopOnWhite();

void imageCb(const sensor_msgs::ImageConstPtr& msg);

void configCallback(1l2bot_examples::StopOnWhiteConfig &config, uint32_t level);
private:

float countWhite(const cv::Mat& src, cv::Mat& dst);

ros: :NodeHandle nh_;

image_transport::ImageTransport it_;

image_transport::Subscriber image_sub_;

ros::Publisher pub_;

dynamic_reconfigure: :Server<l2bot_examples: :StopOnWhiteConfig> server_;
}
StopOnWhite: :StopOnWhite()
{

image_sub_ = it_.subscribe(CAM_TOPIC, 1, &StopOnWhite::imageCb, this);

pub_ = nh_.advertise<geometry msgs::Twist>(TWIST_PUB, 10);

59

server_.setCallback(boost::bind(&StopOnWhite::configCallback, this, _1, _2));

In the StopOnWhite constructor, a subscriber for the input image topic and publisher for the Twist
message are created. Whenever an image arrives on the input image topic, it will call a function named
imageCb. Every time the node receives a message, it takes the data from the message, creates a new
geometry msgs::Twist message with the movement commands, and publishes it. We also set a
callback and send the callback function to the server. When the server gets a reconfiguration
request, it will call the callback function. The remaining is for initialize default values for variables.

void StopOnWhite::configCallback(1l2bot_examples::StopOnWhiteConfig &config, uint32_t level)
{
white_all ratio_ = config.white_all ratio;
switch (config.thresh_type) {
case 0: thresh_type_ = cv::THRESH_BINARY; break;

case 1: thresh_type_

cv: :THRESH_BINARY_INV; break;

case 2: thresh_type_ = cv::THRESH_TRUNC; break;

case 3: thresh_type_ = cv::THRESH_TOZERO; break;
case 4: thresh_type_ = cv::THRESH_TOZERO_INV; break;
case 5: thresh_type_ = cv::THRESH_OTSU; break;

}

In the configCallback function, first we set new values for the parameters. The way to access the
parameters is, for example, config.white_all ratio. The name of the parameter must be the same
as the one that you configured in the .cfg file. Then we use switch cases to define different styles of
thresholding. THRESH_BINARY gives the most common type of binary thresholding.
THRESH_BINARY_INV isthe opposite of binary thresholding. The destination pixel is set to zero if the
corresponding source pixel is greater than the threshold, and to maxValue if the source pixel is less than
the threshold. In the type of THRESH_TRUNC, the destination pixel is set to the threshold if the source
pixel value is greater than the threshold; otherwise it is set to the source pixel value. maxValue is
ignored. In the type of THRESH_TOZERO, the destination pixel is set to the corresponding source pixel
value if the source pixel value is greater than the threshold; otherwise it is set to zero. maxValue is
ignored. THRESH_TOZERO_INV is the opposite of THRESH_TOZERO. In this case, the destination pixel
value is set to zero if the source pixel value greater than the threshold; Otherwise it is set to the source
pixel value. THRESH_OTSU is the Otsu’s Binarization. This algorithm finds the optimal threshold value
from image histogram and returns you as the second output, retVal.

void StopOnWhite::imageCb(const sensor_msgs::ImageConstPtr& msg)

{
cv_bridge::CvImagePtr cv_ptr;

try

60

cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
}
catch (cv_bridge::Exception& e)
{

ROS_ERROR("cv_bridge exception: %s", e.what());

return;

}

In the subscriber imageCb callback, it converts the sensor_msgs/Image data into the cv::Mat OpenCV
data type. The cv_bridge::CvimagePtr cv_ptr buffer is allocated for storing the OpenCV image after
performing the ROS-OpenCV conversion using the cv_bridge::toCvCopy function. Since we will count
white pixels on the image, we need a mutable copy of it, so we use toCvCopy ().
sensor_msgs: :image_encodings: :BGR8 is constant for “bgr8”. Finally, we should always wrap calls to
toCvCopy () to catch conversion errors as this function will not check for the validity of the data.
cv::Mat preview;
float white_visible = countWhite(cv_ptr->image, preview);

geometry_msgs::Twist twist;

if (white_visible > white_all ratio)

{

twist.linear.x = 0.0;
}
Else
{

twist.linear.x = 2.0;
}

pub_.publish(twist);
cv::imshow(CVWIN_PREVIEW, preview);
cv::waitKey(3);

}

Then we call countihite() function to count white pixels on the OpenCV image pointed by cv_ptr, and
create the message we are going to send, twist of the type geometry msgs::Twist. Then we compare
the counted white pixel value with the parameter white_all ratio: if the white pixel counted is larger
than the parameter, the robot will stop; otherwise, it will continue moving forward. After comparing, we
publish the message, and update the GUI to show image.

float StopOnWhite::countWhite(const cv::Mat& src, cv::Mat& preview)

{

cv::Mat src_gray;

61

cv::cvtColor(src, src_gray, CV_BGR2GRAY);
if (use_median_blur_) cv::medianBlur(src_gray, src_gray, 2*blur_amount_ + 1);
cv::threshold(src_gray, preview, thresh_value_, max_BINARY_value_, thresh_type_);
int white_count = cv::countNonZero(preview);
return (float)white_count / (float)(src.rows * src.cols);

}

In the countWhite() callback function, we first call cvtColor to convert the input image from BGR to
grayscale, and then blur the grayscale image using the median filter. Next, we sue dynamic thresholding
to binarize the input image. Then, it counts the number of white pixels and return the number of white
pixels / the number of total pixels.

In Gazebo Simulation, the robot will stop when see a white object.

Gazebo_StopOnWhite video link

https://youtu.be/67sDI81KVVo

62

Following line

#include "linedetect.hpp"

#include <cv_bridge/cv_bridge.h>
#include <cstdlib>

#include <string>

$#include <opencv2/highgui/highgui.hpp>
#include "ros/ros.h"

#include "opencv2/opencv.hpp"

#include "ros/console.h"

#include "line follower_ turtlebot/pos.h"

cv_bridge::CvImagePtr cv_ptr;
try {
cv_ptr = cv_bridge::toCvCopy(msg, sensor msgs::image_encodings::BGRE) ;
img = cv_ptr->image;
cv::waitKey(30);
E }
) catch (cv_bridge::Exceptions e) {
ROS_ERROR("Could not convert from '%s' to 'bgr8'.", msg->encoding.c_str()):
T

Evoid LineDetect::imageCallback(const sensor msgs::ImageConstPtr& msg) {

Elcv::Mat LineDetect::Gauss(cv::Mat input) {
cv::Mat output;

// Bpplying Gaussian Filter
cv::GaussianBlur (input, output, cv::Size(3, 3), 0.1, 0.1);
return output;

=)

Bint LineDetect::colorthresh(cv::Mat input) {
// Initializaing variables
cv::Size s = input.size():
std: :vector<std::vector<cv::Point> > v;
auto w = s.width;
auto h = s.height;
auto ¢ x = 0.0;
// Detect all objects within the HSV range
cv::cvtColor(input, LineDetect::img hsv, CV_BGR2HSV) ;
LineDetect::LowerYellow = {20, 100, 100};
LineDetect: :UpperYellow = {30, 255, 255};
cv::inRange (LineDetect: :img_hsv, LowerYellow,
UpperYellow, LineDetect::img mask);
img mask(cv::Rect(0, 0, w, 0.6%h)) = 0;
// Find contours for better visualization
cv::findContours (LineDetect::img _mask, v, CV_RETR_LIST, CV_CHAIN APPROX NONE) ;
// 1If contours exist add a bounding
// Choosing contours with maximum area
H Aif (v.size() != 0) {
auto area = 0;
auto idx = 0;
auto count = 0;
g while (count < v.size()) {
- if (area < v[count].size()) {
idx = count;
area = v[count].size();
P }
count++;
E 1}
cv::Rect rect = boundingRect (v[idx]);
cv::iPoint ptl, pt2, pt3:
ptl.x = rect.x;
ptl.y = rect.y;

pt2.x = rect.x + rect.width;
pt2.y = rect.y + rect.height;
pt3.x = ptl.x+5;
pt3.y = ptl.y-5;

// Drawing the rectangle using points obtained
rectangle (input, ptl, pt2, CV_RGB(255, 0, 0), 2);
// Inserting text box
cv::putText (input, "Line Detected", pt3,
CV_FONT_HERSHEY_COMPLEX, 1, CV_RGB(255, 0, 0));
}
// Mask image to limit the future turns affecting the output
img_mask(cv::Rect(0.7*w, 0, 0.3%w, h)) = 0}
img mask(cv::Rect(0, 0, 0.3*w, h)) = 0;
// Perform centroid detection of line
cv::Moments M = cv::moments(LineDetect: :img_mask) ;
if (M.m00 > 0) {
cv::Point pl(M.m10/M.m00, M.m01/M.m00) ;
cv::circle(LineDetect::img mask, pl, 5, cv::Scalar(155, 200, 0), -1);
}
c x = M.ml0/M.m00;
// Tolerance to chooise directions
auto tol = 15;
auto count = cv::countNonZero (img mask) ;
// Turn left if centroid is to the left of the image center minus tolerance
// Turn right if centroid is to the right of the image center plus tolerance
// Go straight if centroid is near image center
if (c_x < w/2=-tol) {
LineDetect::dir = 0;
} else if (c_x > w/Z+tol) {
LineDetect::dir = 2;
} else {
LineDetect::dir = 1;
}
// Search if no line detected
if (count == 0) {
LineDetect::dir = 3;
}
// output images viewed by the turtlebot
cv: :namedWindow ("Turtlebot View");
imshow("Turtlebot View", input);
return LineDetect::dir;

65

int main(int argc, char **argv) ({

}

// Initializing node and object

ros::init(argc, argv, "detection");

ros: :NodeHandle n;

LineDetect det;

// Creating Publisher and subscriber

ros::Subscriber sub = n.subscribe("/camera/rgb/image raw",
, &LineDetect::imageCallback, &det); '

ros::Publisher dirPub = n.advertise<
1ine_follower_turtlebot::pos)("jijfrtic:",)iz
line follower_ turtlebot::pos msg;

while (ros::ok()) {

if ('det.img.empty()) {
// Perform image processing
det.img filt = det.Gauss(det.img);
msg.direction = det.colorthresh(det.img filt):
// Publish direction message
dirPub.publish (msqg) ;
}

ros::spinOnce() ;

}
// Closing image viewer
cv::destroyWindow("Turtlebot View");

This part of code is for line detection. In the main, we initialize a node and a node handler, as well as an
instance of LineDetect object. Then we create a subscriber for the input image and publisher for turtlebot
movement direction. Whenever an image arrives on the input image topic, imageCallback() will be
called. In the while loop, while image is not empty, we will do image processing and publish the
turtlebot movement message.

In the LineDetect:: imageCallback function, first we covert the ROS image to Cvimage suitable for working
with OpenCV. Then we apply Gaussian Filter on the image. In the core part of line detection, we first
detect the upper and lower part of the line within the HSV range, and find the contours of the line and
draw bounding box. Next, we detect the centroid of the line, and perform left or right turn and straight
forward based on the position of centroid on the image. Finally, we show the image viewed by turtlebot.

66

#include <geometry msgs/Twist.h>
#include <vector>

#include "ros/ros.h"

#include "ros/console.h"

#include "turtlebot.hpp"

#include "line follower turtlebot/pos.h"

void turtlebot::dir_sub(line_follower_turtlebot::pos msg)
turtlebot::dir = msg.direction;

}

void turtlebot::vel cmd(geometry msgs::Twist &velocity,
ros::Publisher &pub, ros::Rate &rate) {

1/
if

//
if

/7
if

//
if

If direction is left
(turtlebot::dir == 0) {
velocity.linear.x = 0.1;
velocity.angular.z = 0.1
pub.publish(velocity) ;
rate.sleep():;

ROS_INFO STREAM("Turning Left");

wn
~s

If direction is straight
(turtlebot::dir == 1) {
velocity.linear.x = 0.15;
velocity.angular.z = 0;
pub.publish(velocity) ;
rate.sleep();
ROS_INFO_STREAH("Straight");

If direction is right
{turtlebot::dir == 2) {
velocity.linear.x = 0.1;
velocity.angular.z = =0.1
pub.publish (velocity) ;
rate.sleep() ;

ROS_INFO STREAM("Turning Right");

wn

3

If robot has to search
(turtlebot::dir == 3) {
velocity.linear.x = 0;
velocity.angular.z = 0.25
pub.publish(velocity) ;
rate.sleep();

ROS INFO STREAM("Searching");

.

67

int main(int argc, char **argv) {

// Initializing node and object

ros::init(argc, argv, "velocity"):

ros: :NodeHandle n;

turtlebot bot;

geometry msgs::Twist velocity;

// Creating subscriber and publisher

ros::Subscriber sub = n.subscribe("/direction",
1, &turtlebot::dir sub, &bot);

ros::Publisher pub = n.advertise<geometry msgs::Twist>
("/cmd_vel mux/input/teleop”, 10);

ros::Rate rate(10);

while (ros::ok()) {
ros::spinOnce () ;
// Publish velocity commands to turtlebot
bot.vel cmd(velocity, pub, rate);
rate.sleep()

}

return 0;

}

In this part of the code, we perform turtlebot movement. In the main, we initialize a node and a node
handler, an instance for turtlebot object, and a geometry_msgs message object. Then we created a subscriber to
subscribe to the direction topic and a publisher to publish a message type of geometry_msgs on the topic teleop.
In the while loop, we publish the geometry_msgs message commands to control turtlebot movement.

Gazebo_LineFollow video link

https://youtu.be/PUEOByChnUs

https://youtu.be/1xAOLqgfhr2l

68

69

